如圖,已知是橢圓的右焦點;圓與軸交于兩點,其中是橢圓的左焦點.
(1)求橢圓的離心率;
(2)設(shè)圓與軸的正半軸的交點為,點是點關(guān)于軸的對稱點,試判斷直線與圓的位置關(guān)系;
(3)設(shè)直線與圓交于另一點,若的面積為,求橢圓的標(biāo)準(zhǔn)方程.
(1);(2)相切;(3).
解析試題分析:(1)將點代入圓的方程,得出與的等量關(guān)系,進(jìn)而求出橢圓的離心率;(2)先求出點、的坐標(biāo),進(jìn)而求出直線的斜率,通過直線的斜率與直線的斜率的乘積為,得到,進(jìn)而得到直線與圓的位置關(guān)系;(3)通過為的中位線得到與的面積,從而求出的值,進(jìn)而求出與的值,從而確定橢圓的標(biāo)準(zhǔn)方程.
試題解析:(1)圓過橢圓的左焦點,把代入圓的方程,得,
故橢圓的離心率;
(2)在方程中令得,可知點為橢圓的上頂點,
由(1)知,,故,,故,
在圓的方程中令可得點坐標(biāo)為,則點為,
于是可得直線的斜率,而直線的斜率,
,直線與圓相切;
(3)是的中線,,
,從而得,,橢圓的標(biāo)準(zhǔn)方程為.
考點:1.橢圓的離心率;2.直線與圓的位置關(guān)系;3.橢圓的方程
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點,焦點在坐標(biāo)軸上的雙曲線經(jīng)過、兩點
(1)求雙曲線的方程;
(2)設(shè)直線交雙曲線于、兩點,且線段被圓:三等分,求實數(shù)、的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線:.
(1)若曲線是焦點在軸上的橢圓,求的取值范圍;
(2)設(shè),過點的直線與曲線交于,兩點,為坐標(biāo)原點,若為直角,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(a>b>0)的離心率為,右焦點為(,0).
(I)求橢圓的方程;
(Ⅱ)過橢圓的右焦點且斜率為k的直線與橢圓交于點A(xl,y1),B(x2,y2),若, 求斜率k是的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知過點的橢圓:的右焦點為,過焦點且與軸不重合的直線與橢圓交于,兩點,點關(guān)于坐標(biāo)原點的對稱點為,直線,分別交橢圓的右準(zhǔn)線于,兩點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點的坐標(biāo)為,試求直線的方程;
(3)記,兩點的縱坐標(biāo)分別為,,試問是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓兩焦點坐標(biāo)分別為,,且經(jīng)過點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點,直線與橢圓交于兩點.若△是以為直角頂點的等腰直角三角形,試求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓,橢圓以的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點,點A,B分別在橢圓和上, ,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,直線與E交于A、B兩點,且,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標(biāo)為,記直線CA、CB的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線的焦點為F,過F的直線交拋物線于M、N兩點,其準(zhǔn)線與x軸交于K點.
(1)求證:KF平分∠MKN;
(2)O為坐標(biāo)原點,直線MO、NO分別交準(zhǔn)線于點P、Q,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com