【題目】已知拋物線的焦點,點,為拋物線上一點,且不在直線上,則周長取最小值時,線段的長為( )

A. 1B. C. 5D.

【答案】B

【解析】

求△PAF周長的最小值,即求|PA|+|PF|的最小值.設點P在準線上的射影為D,則根據(jù)拋物線的定義,可知|PF|=|PD|.因此問題轉(zhuǎn)化為求|PA|+|PD|的最小值,根據(jù)平面幾何知識,當D、P、A三點共線時|PA|+|PD|最小,由此即可求出P的坐標,然后求解PF長度.

求△PAF周長的最小值,即求|PA|+|PF|的最小值,

設點P在準線上的射影為D,

根據(jù)拋物線的定義,可知|PF|=|PD|

因此,|PA|+|PF|的最小值,即|PA|+|PD|的最小值

根據(jù)平面幾何知識,可得當D,P,A三點共線時|PA|+|PD|最小,

此時P,3),F(1,0)的長為,

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠今年初用128萬元購進一臺新的設備,并立即投入使用,計劃第一年維修、保養(yǎng)費用8萬元,從第二年開始,每年的維修、保養(yǎng)修費用比上一年增加4萬元,該設備使用后,每年的總收入為54萬元,設使用x年后設備的盈利總額y萬元.

1)寫出yx之間的函數(shù)關(guān)系式;

2)從第幾年開始,該設備開始盈利?

3)使用若干年后,對設備的處理有兩種方案:①年平均盈利額達到最大值時,以42萬元價格賣掉該設備;②盈利額達到最大值時,以10萬元價格賣掉該設備.問哪種方案處理較為合理?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系xOy中,橢圓C:(a>b>0)離心率為,其短軸長為2.

(1)求橢圓C的標準方程;

(2)如圖,A為橢圓C的左頂點,P,Q為橢圓C上兩動點,直線PO交AQ于E,直線QO交AP于D,直線OP與直線OQ的斜率分別為k1,k2,且k1k2,(λ,μ為非零實數(shù)),求λ22的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20名學生某次數(shù)學考試成績(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績落在[50,60)與[60,70)中的學生人數(shù);

(3)從成績在[50,70)的學生中人選2人,求這2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的四個頂點組成的四邊形的面積為,且經(jīng)過點

1求橢圓的方程;

2若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于兩點,與交于點,四邊形的面積分別為的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年11月15日,我市召開全市創(chuàng)建全國文明城市動員大會,會議向全市人民發(fā)出動員令,吹響了集結(jié)號.為了了解哪些人更關(guān)注此活動,某機構(gòu)隨機抽取了年齡在15~75歲之間的100人進行調(diào)查,并按年齡繪制的頻率分布直方圖如圖所示,其分組區(qū)間為:,,,,,.把年齡落在內(nèi)的人分別稱為“青少年人”和“中老年人”,經(jīng)統(tǒng)計“青少年人”與“中老年人”的人數(shù)之比為.

(1)求圖中的值,若以每個小區(qū)間的中點值代替該區(qū)間的平均值,估計這100人年齡的平均值;

(2)若“青少年人”中有15人關(guān)注此活動,根據(jù)已知條件完成題中的列聯(lián)表,根據(jù)此統(tǒng)計結(jié)果,問能否有的把握認為“中老年人”比“青少年人”更加關(guān)注此活動?

關(guān)注

不關(guān)注

合計

青少年人

15

中老年人

合計

50

50

100

0.050

0.010

0.001

3.841

6.635

10.828

附參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標原點為極點,x軸的正半軸為極軸建建立極坐標系,曲線C的極坐標方程為

求曲線C的直角坐標方程與直線l的極坐標方程;

若直線與曲線C交于點不同于原點,與直線l交于點B,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù),直線

討論的圖象與直線的交點個數(shù);

若函數(shù)的圖象與直線相交于,兩點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某校高二年級800名學生上學期期末語文和外語成績,按優(yōu)秀和不優(yōu)秀分類得結(jié)果:語文和外語都優(yōu)秀的有60人,語文成績優(yōu)秀但外語不優(yōu)秀的有140人,外語成績優(yōu)秀但語文不優(yōu)秀的有100.

問:(1)由題意列出學生語文成績與外語成績關(guān)系的列聯(lián)表:

語文優(yōu)秀

語文不優(yōu)秀

總計

外語優(yōu)秀

外語不優(yōu)秀

總計

2)能否在犯錯概率不超過0.001的前提下認為該校學生的語文成績與外語成績有關(guān)系?(保留三位小數(shù))

(附:

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案