【題目】某家電公司銷售部門共有200位銷售員,每位部門對每位銷售員都有1400萬元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對應(yīng)的區(qū)間分別為, , , , ,繪制出頻率分布直方圖.
(1)求的值,并計算完成年度任務(wù)的人數(shù);
(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);
(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機(jī)選取2位,獎勵海南三亞三日游,求獲得此獎勵的2位銷售員在同一組的概率.
【答案】(Ⅰ),;(Ⅱ)見解析;。á螅.
【解析】試題分析:(1)頻率分布直方圖中所有小長方形面積之和為1,所以有,解得的值,根據(jù)小長方形面積對應(yīng)區(qū)間概率,以及頻數(shù)等于總數(shù)與頻率乘積得完成年度任務(wù)的人數(shù)為.(2)分成抽樣就是按比例,可按小長方形縱坐標(biāo)之比進(jìn)行分人數(shù),(3)完成年度任務(wù)的銷售員中共有6人,利用枚舉法得6人中隨機(jī)選取2位,所有的基本事件數(shù)為15,其中在同一組基本事件數(shù)有6個,最后根據(jù)古典概型概率公式計算概率.
試題解析:(Ⅰ)∵,∴.
完成年度任務(wù)的人數(shù)為.
(Ⅱ)第1組應(yīng)抽取的人數(shù)為,
第2組應(yīng)抽取的人數(shù)為,
第3組應(yīng)抽取的人數(shù)為,
第4組應(yīng)抽取的人數(shù)為,
第5組應(yīng)抽取的人數(shù)為.
(Ⅲ)在(Ⅱ)中完成年度任務(wù)的銷售員中,第4組有3人,記這3人分別為, , ,第5組有3人,記這3人分別為, , .
從這6人中隨機(jī)選取2位,所有的基本事件為: , , , , , , , , , , , , , , ,共有15個基本事件.
獲得此獎勵的2位銷售員在同一組的基本事件有6個,
故所求概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(3)若函數(shù),其中為奇函數(shù), 為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓: 的離心率為,點在橢圓上.
(1)求橢圓的方程;
(2)已知與為平面內(nèi)的兩個定點,過點的直線與橢圓交于, 兩點,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,,點在平而內(nèi)的射影為
(1)證明:四邊形為矩形;
(2)分別為與的中點,點在線段上,已知平面,求的值.
(3)求平面與平面所成銳二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左,右焦點分別為,,離心率為,直線
與橢圓的兩個交點間的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,過,作兩條平行線,與橢圓的上半部分分別交于,兩點,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形, 平面, , , , 分別是, 的中點.
(1)證明: ;
(2)設(shè)為線段上的動點,若線段長的最小值為,求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)證明線線垂直則需證明線面垂直,根據(jù)題意易得,然后根據(jù)等邊三角形的性質(zhì)可得,又,因此得平面,從而得證(2)先找到EH什么時候最短,顯然當(dāng)線段長的最小時, ,在中, , , ,∴,由中, , ,∴.然后建立空間直角坐標(biāo)系,寫出兩個面法向量再根據(jù)向量的夾角公式即可得余弦值
解析:(1)證明:∵四邊形為菱形, ,
∴為正三角形.又為的中點,∴.
又,因此.
∵平面, 平面,∴.
而平面, 平面且,
∴平面.又平面,∴.
(2)如圖, 為上任意一點,連接, .
當(dāng)線段長的最小時, ,由(1)知,
∴平面, 平面,故.
在中, , , ,
∴,
由中, , ,∴.
由(1)知, , 兩兩垂直,以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,又, 分別是, 的中點,
可得, , , ,
, , ,
所以, .
設(shè)平面的一法向量為,
則因此,
取,則,
因為, , ,所以平面,
故為平面的一法向量.又,
所以 .
易得二面角為銳角,故所求二面角的余弦值為.
【題型】解答題
【結(jié)束】
20
【題目】【2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考】已知橢圓: 的左頂點為,上頂點為,直線與直線垂直,垂足為點,且點是線段的中點.
(I)求橢圓的方程;
(II)如圖,若直線: 與橢圓交于, 兩點,點在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com