已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點.
(1)求a;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線y=b與函數(shù)y=f(x)的圖象有3個交點,求b的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在與時都取得極值.
(1)求的值及的極大值與極小值;
(2)若方程有三個互異的實根,求的取值范圍;
(3)若對,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,
(1)若,求曲線在處的切線方程;
(2)若對任意的,都有恒成立,求的最小值;
(3)設,,若,為曲線的兩個不同點,滿足,且,使得曲線在處的切線與直線AB平行,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f(x)=x3-x2+6x-a.
(1)對于任意實數(shù)x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個實根,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ln x+2x-6.
(1)證明:函數(shù)f(x)有且只有一個零點;
(2)求該零點所在的一個區(qū)間,使這個區(qū)間的長度不超過
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖像在點處的切線斜率為10.
(1)求實數(shù)的值;
(2)判斷方程根的個數(shù),并證明你的結(jié)論;
(21)探究: 是否存在這樣的點,使得曲線在該點附近的左、右兩部分分別位于曲線在該點處切線的兩側(cè)? 若存在,求出點A的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知f(x)=xln x,g(x)=x3+ax2-x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)對一切的x∈(0,+∞),2f(x)<g′(x)+2恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知a,b為常數(shù),a¹0,函數(shù).
(1)若a=2,b=1,求在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數(shù);
②若,,且在區(qū)間[1,2]上是增函數(shù),求由所有點形成的平面區(qū)域的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com