求與直線平行且距離等于的直線方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分) 如圖,在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(0, p)(p>0), 直線l : y= -p, 點(diǎn)P在直線l上移動(dòng),R是線段PF與x軸的交點(diǎn), 過R、P分別作直線、,使, .
(1)求動(dòng)點(diǎn)Q的軌跡C的方程;
(2)在直線l上任取一點(diǎn)M做曲線C的兩條切線,設(shè)切點(diǎn)為A、B,求證:直線AB恒過一定點(diǎn);
(3)對(2)求證:當(dāng)直線MA, MF, MB的斜率存在時(shí),直線MA, MF, MB的斜率的倒數(shù)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知三條直線 ,直線和直線,且與的距離是
(1)求的值
(2)能否找到一點(diǎn),使得點(diǎn)同時(shí)滿足下面三個(gè)條件,①是第一象限的點(diǎn);②到的距離是到距離的,③點(diǎn)到的距離與到的距離之比是,若能,求點(diǎn)的坐標(biāo),若不能,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)F(1,0)和直線直線過直線上的動(dòng)點(diǎn)M且與直線垂直,線段MF的垂直平分線與直線相交于點(diǎn)P。
(I)求點(diǎn)P的軌跡C的方程;
(II)設(shè)直線PF與軌跡C相交于另一點(diǎn)Q,與直線相交于點(diǎn)N,求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知直線l與點(diǎn)A(3,3),B(5,2)的距離相等,且過兩直線l1:3x-y-1=0與l2:x+y-3=0的交點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知直線l經(jīng)過點(diǎn)P(1,1),傾斜角.
(Ⅰ)寫出直線l的參數(shù)方程
(Ⅱ)設(shè)l與圓x2+y2=4相交與兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com