6.設(shè)α,β,γ是三個(gè)不重合的平面,m,n是兩條不重合的直線,則下列說法正確的是(  )
A.若α⊥β,β⊥γ,則α∥γB.若α⊥β,m∥β,則m⊥αC.若m⊥α,n⊥α,則m∥nD.若m∥α,n∥α,則m∥n

分析 在A中,α與γ相交或平行;在B中,m與α相交、平行或m?α;在C中,由線面垂直的性質(zhì)定理得m∥n;在D中,m與n相交、平行或異面.

解答 解:由α,β,γ是三個(gè)不重合的平面,m,n是兩條不重合的直線,知:
在A中,若α⊥β,β⊥γ,則α與γ相交或平行,故A錯(cuò)誤;
在B中,若α⊥β,m∥β,則m與α相交、平行或m?α,故B錯(cuò)誤;
在C中,若m⊥α,n⊥α,則由線面垂直的性質(zhì)定理得m∥n,故C正確;
在D中,若m∥α,n∥α,則m與n相交、平行或異面,故D錯(cuò)誤.
故選:C.

點(diǎn)評(píng) 本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論能力、運(yùn)算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.為了解葫蘆島市高三學(xué)生某次模擬考試的數(shù)學(xué)成績(jī)的某項(xiàng)指標(biāo),從所有成績(jī)?cè)诩案窬以上(90及90分以上)的考生中抽取一部分考生對(duì)其成績(jī)進(jìn)行統(tǒng)計(jì),將成績(jī)按如下方式分成六組,第一組[90,100),第二組[100,110),…,第六組[140,150].如圖為其頻率分布直方圖的一部分,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組人數(shù)為4.
(1)請(qǐng)將頻率分布直方圖補(bǔ)充完整,并估計(jì)這組數(shù)據(jù)的平均數(shù)M;
(2)現(xiàn)根據(jù)初賽成績(jī)從第四組和第六組中任意選2人,求兩個(gè)人來(lái)自于同一組的概率P1;
(3)用這部分考生的成績(jī)分布的頻率估計(jì)全市考生的成績(jī)分布,并從全市考生中隨機(jī)抽取3名考生,求成績(jī)不低于130分的人數(shù)ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=ax2-bx+1,點(diǎn)(a,b)是平面區(qū)域$\left\{\begin{array}{l}{x+y-2≤0}\\{x≥m}\\{y≥-1}\end{array}\right.$內(nèi)的任意一點(diǎn),若f(2)-f(1)的最小值為-6,則m的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知正實(shí)數(shù)m,n滿足m+n+$\sqrt{{m}^{2}+{n}^{2}}$=2,則mn的最大值為(  )
A.6-3$\sqrt{2}$B.2C.6-4$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.定義在R上的函數(shù)y=f(x-1)是單調(diào)遞減函數(shù)(如圖所示),給出四個(gè)結(jié)論,其中正確結(jié)論個(gè)數(shù)是( 。
①f(0)=1  ②f(1)<1    ③f-1(1)=0    ④f-1($\frac{1}{2}$)>0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.不等式|2x-1|<3的解集為(  )
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(-∞,2)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)求銷售額y的方差;
(2)求回歸直線方程.
(參考數(shù)據(jù):$\sum_{i=1}^{5}{x}_{i}^{2}$=145,$\sum_{i=1}^{5}{y}_{1}^{2}$=13500,${{\sum_{i=1}^{5}x}_{i}y}_{i}$=1380,${\;}_^{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知(1-$\frac{x}{3}$)2015=a0+a1x+…+a2015x2015,則3a1+32a2+…+32015a2015=( 。
A.0B.1C.-1D.22015-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,已知AB是⊙O的直徑,C是⊙O上異于A,B的點(diǎn),VC垂直于⊙O所在的平面,且AB=4,VC=3.
(Ⅰ)若點(diǎn)D在△VCB內(nèi),且DO∥面VAC,作出點(diǎn)D的軌跡,說明作法及理由;
(Ⅱ)求三棱錐V-ABC體積的最大值,并求取到最大值時(shí),直線AB與平面VAC所成角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案