計算:
(1)16-0.75
(2)0.064 -
1
3

(3)(
1
4
 -
1
2
考點:有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)指數(shù)冪的運算法則即可得到結(jié)論.
解答: 解:(1)16-0.75=(24-0.75=2-3=
1
8
,
(2)0.064 -
1
3
=0.43×(-
1
3
)
=0.4-1
=
10
4
=
5
2

(3)(
1
4
 -
1
2
=4
1
2
=
4
=2
點評:本題主要考查指數(shù)冪的基本運算,根據(jù)指數(shù)冪的運算法則是解決本題的關(guān)鍵.比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
OA
=
e1
OB
=
e2
,若
e1
e2
不平行,點P在線段AB上|AP|=2|PB|,如圖所示,則
OP
=( 。
A、
1
3
e1
-
2
3
e2
B、
2
3
e1
+
1
3
e2
C、
1
3
e1
+
2
3
e2
D、
2
3
e1
-
1
3
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=3,(n+1)an=(n-1)an-1,Sn是前n項和,求
lim
n→+∞
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(x-1),g(x)=lg(x2+1)
(1)求f(x)和g(x)的定義域;
(2)判斷g(x)奇偶性,并證明你的結(jié)論;
(3)判斷f(x)在其定義域上的單調(diào)性?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間給定不共面的A、B、C、D四個點,其中任意兩點的距離都不相同,考慮具有如下性質(zhì)的平面α:A、B、C、D中有三個點到α的距離相同,另外一個點到α的距離是前三個點到α的距離的2倍,這樣的平面的個數(shù)是(  )
A、15B、23C、26D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)定義域為R,且對定義域內(nèi)的一切實數(shù)x,y都有f(x+y)=f(x)+f(y),又當(dāng)x>0時,有f(x)<0,且f(1)=-
1
2
,則f(x)在區(qū)間[-2,6]上的最大值與最小值之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)y=f(x),x∈D(D為定義域)圖象上的點到坐標(biāo)原點的距離為函數(shù)的y=f(x),x∈D的模.若模存在最大值,則此最大值稱之為函數(shù)y=f(x),x∈D的長距;若模存在最小值,則此最小值稱之為函數(shù)y=f(x),x∈D的短距.
(1)分別判斷函數(shù)f1(x)=
1
x
與f2(x)=
-x2-4x+5
是否存在長距與短距,若存在,請求出;
(2)對于任意x∈[1,2]是否存在實數(shù)a,使得函數(shù)f(x)=
2x|x-a|
的短距不小于2,若存在,請求出a的取值范圍;不存在,則說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,已知Sn=2an-2n+1(n∈N*).
(1)求a1的值,并證明數(shù)列{
an
2n
}是等差數(shù)列;
(2)設(shè)bn=log2
an
n+1
,數(shù)列{
1
bn
}的前n項和為Bn,若存在整數(shù)m,使對任意n∈N*且n≥2,都有B3n-Bn
m
20
成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x與y呈相關(guān)關(guān)系,且由觀測數(shù)據(jù)得到的樣本數(shù)據(jù)散點圖如圖所示,則由該觀測數(shù)據(jù)算得的回歸方程可能是( 。
A、
?
y
=-1.314x+1.520
B、
?
y
=1.314x+1.520
C、
?
y
=1.314x-1.520
D、
?
y
=-1.314x-1.520

查看答案和解析>>

同步練習(xí)冊答案