【題目】“中國(guó)大能手”是央視推出的一檔大型職業(yè)技能挑戰(zhàn)賽類節(jié)目,旨在通過該節(jié)目,在全社會(huì)傳播和弘揚(yáng)“勞動(dòng)光榮、技能寶貴、創(chuàng)造偉大”的時(shí)代風(fēng)尚.某公司準(zhǔn)備派出選手代表公司參加“中國(guó)大能手”職業(yè)技能挑戰(zhàn)賽.經(jīng)過層層選拔,最后集中在甲、乙兩位選手在一項(xiàng)關(guān)鍵技能的區(qū)分上,選手完成該項(xiàng)挑戰(zhàn)的時(shí)間越少越好.已知這兩位選手在15次挑戰(zhàn)訓(xùn)練中,完成該項(xiàng)關(guān)鍵技能挑戰(zhàn)所用的時(shí)間(單位:秒)及挑戰(zhàn)失。ㄓ谩啊痢北硎荆┑那闆r如下表1:
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
× | 96 | 93 | × | 92 | × | 90 | 86 | × | × | 83 | 80 | 78 | 77 | 75 | |
× | 95 | × | 93 | × | 92 | × | 88 | 83 | × | 82 | 80 | 80 | 74 | 73 |
據(jù)上表中的數(shù)據(jù),應(yīng)用統(tǒng)計(jì)軟件得下表2:
均值(單位:秒)方差 | 方差 | 線性回歸方程 | |
甲 | 85 | 50.2 | |
乙 | 84 | 54 |
(1)根據(jù)上述回歸方程,預(yù)測(cè)甲、乙分別在下一次完成該項(xiàng)關(guān)鍵技能挑戰(zhàn)所用的時(shí)間;
(2)若該公司只有一個(gè)參賽名額,根據(jù)以上信息,判斷哪位選手代表公司參加職業(yè)技能挑戰(zhàn)賽更合適?請(qǐng)說明你的理由.
【答案】(1)甲用時(shí)73.84秒,乙用時(shí)72.57秒; (2)選手乙,見解析.
【解析】
(1)把時(shí)分別代入和 中,即可求出;(2)由,由于,說明甲、乙用時(shí)都在逐步減少,乙的方差大,說明乙進(jìn)步更大,
(1)當(dāng)時(shí),(秒)
(秒)
(2)甲、乙兩位選手完成關(guān)鍵技能挑戰(zhàn)成功的次數(shù)都為10次,失敗次數(shù)都為5次,所以,只需要比較他們完成關(guān)鍵技能挑戰(zhàn)成功的情況即可,根據(jù)所給信息,結(jié)合(1)中預(yù)測(cè)結(jié)果,綜合分析,選手乙代表公司參加技能挑戰(zhàn)賽更合適,理由如下:
因?yàn)樵谙嗤螖?shù)的挑戰(zhàn)練習(xí)中,兩位選手在關(guān)鍵技能挑戰(zhàn)的完成次數(shù)和失敗次數(shù)都分別相同,,乙選手用時(shí)更短;
由于,雖然甲選手的發(fā)揮更穩(wěn)定,但穩(wěn)定在較大的平均數(shù)上,隨著訓(xùn)練次數(shù)增加,甲、乙用時(shí)都在逐步減少,乙的方差大,說明乙進(jìn)步更大;
從(1)的計(jì)算結(jié)果進(jìn)一步說明,選手乙代表公司參加技能挑戰(zhàn)賽更合適.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線方程為.
(1)若函數(shù)在時(shí)有極值,求的解析式;
(2)函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長(zhǎng)均為的四面體中,點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn).若點(diǎn),是平面內(nèi)的兩動(dòng)點(diǎn),且,,則的面積為( )
A. B. 3
C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求的極坐標(biāo)方程;
(2)若曲線的極坐標(biāo)方程為,直線與在第一象限的交點(diǎn)為,與的交點(diǎn)為(異于原點(diǎn)),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:
方案一:每戶每月收取管理費(fèi)2元,月用電量不超過30度時(shí),每度0.5元;超過30度時(shí),超過部分按每度0.6元收。
方案二:不收取管理費(fèi),每度0.58元.
(1)求方案一的收費(fèi)L(x)(元)與用電量x(度)間的函數(shù)關(guān)系.若老王家九月份按方案一繳費(fèi)35元,問老王家該月用電多少度?
(2)老王家該月用電量在什么范圍內(nèi),選擇方案一比選擇方案二好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的零點(diǎn);
(Ⅱ)若函數(shù)對(duì)任意實(shí)數(shù)都有成立,求函數(shù)的解析式;
(Ⅲ)若函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2)已知拋物線上一點(diǎn),過點(diǎn)作拋物線的兩條弦和,且,判斷直線是否過定點(diǎn)?并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com