9.設(shè)△ABC的內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,且滿足(a-b)(sinA+sinB)=(a-c)sinC.
(1)求角B的大;
(2)若b=3,求AC邊上高h的最大值.

分析 (1)由已知及正弦定理可得:a2+c2-b2=ac,利用余弦定理可求cosB=$\frac{1}{2}$,結(jié)合范圍B∈(0,π),可求B的值.
(2)由余弦定理,基本不等式可求9≥ac,利用三角形的面積公式可求高h的最大值.

解答 (本題滿分為14分)
解:(1)∵(a-b)(sinA+sinB)=(a-c)sinC,
∴由正弦定理可得:(a-b)(a+b)=(a-c)c,可得:a2+c2-b2=ac,…2分
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,…4分
∵B∈(0,π),
∴B=$\frac{π}{3}$…7分
(2)∵9=a2+c2-2accosB=a2+c2-ac≥ac,當且僅當a=c時等號成立,…10分
∵$\frac{1}{2}$acsinB=$\frac{1}{2}$bh,…12分
∴h=$\frac{acsin\frac{π}{3}}{3}$≤$\frac{3\sqrt{3}}{2}$,即高h的最大值為$\frac{3\sqrt{3}}{2}$…14分

點評 本題主要考查了正弦定理,余弦定理,基本不等式,三角形的面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知x≥0,y≥0,且x+y=1,則x2+y2的取值范圍是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.甲、乙、丙、丁四位同學(xué)一起去問老師詢問成語競賽的成績.老師說:你們四人中有2位優(yōu)秀,2位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績.看后甲對大家說:我還是不知道我的成績.根據(jù)以上信息,則( 。
A.乙可以知道四人的成績B.丁可以知道四人的成績
C.乙、丁可以知道對方的成績D.乙、丁可以知道自己的成績

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)$f(x)=\sqrt{{2^x}-a}$的值域為[0,+∞),則a的取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=sin(ωx+φ)(φ>0,-π<φ<0)的最小正周期是π,將f(x)圖象向左平移$\frac{π}{3}$個單位長度后,所得的函數(shù)圖象過點P(0,1),則函數(shù)f(x)(  )
A.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞減B.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增
C.在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上單調(diào)遞減D.在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{xn}滿足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),證明:當n∈N*時,
(Ⅰ)0<xn+1<xn;
(Ⅱ)2xn+1-xn≤$\frac{{x}_{n}{x}_{n+1}}{2}$;
(Ⅲ)$\frac{1}{{2}^{n-1}}$≤xn≤$\frac{1}{{2}^{n-2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-8+t}\\{y=\frac{t}{2}}\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2{s}^{2}}\\{y=2\sqrt{2}}s\end{array}\right.$(s為參數(shù)).設(shè)P為曲線C上的動點,求點P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知當x∈[0,1]時,函數(shù)y=(mx-1)2 的圖象與y=$\sqrt{x}$+m的圖象有且只有一個交點,則正實數(shù)m的取值范圍是(  )
A.(0,1]∪[2$\sqrt{3}$,+∞)B.(0,1]∪[3,+∞)C.(0,$\sqrt{2}$)∪[2$\sqrt{3}$,+∞)D.(0,$\sqrt{2}$]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.
(Ⅰ)求異面直線AP與BC所成角的余弦值;
(Ⅱ)求證:PD⊥平面PBC;
(Ⅲ)求直線AB與平面PBC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案