【題目】有甲、乙兩種商品,經(jīng)銷這兩種商品所能獲得的利潤分別是p萬元和q萬元.它們與投入資金x萬元的關系是:p= x,q= .今有3萬元資金投入經(jīng)營這兩種商品,為獲得最大利潤,對這兩種商品的資金分別投入多少時,能獲取最大利潤?最大利潤為多少?

【答案】解:設對乙商品投入資金x萬元,則對甲投入資金為(3﹣x)萬元,此時獲取利潤為y萬元;
則由題意知,
,則y=﹣ t2+ t+ = (其中0≤t≤ );
根據(jù)二次函數(shù)的圖象與性質(zhì)知,當t= 時,y有最大值,為
又t= ,得 = ,∴x= =2.25(萬元),∴3﹣x=0.75(萬元);
所以,對甲投入資金0.75萬元,對乙投資2.25萬元時,獲取利潤最大,為 萬元
【解析】如果設對乙商品投入資金x萬元,則對甲投入資金為(3﹣x)萬元,獲取的利潤為y萬元;那么y=p+q,代入可得關于x的解析式,利用換元法得到二次函數(shù)f(t),再由二次函數(shù)的圖象與性質(zhì),求導y的最大值,和對應的t、x.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設f(n)=(1+ n﹣n,其中n為正整數(shù).
(1)求f(1),f(2),f(3)的值;
(2)猜想滿足不等式f(n)<0的正整數(shù)n的范圍,并用數(shù)學歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在海岸線一側(cè)處有一個美麗的小島,某旅游公司為方便游客,在上設立了兩個報名點,滿足中任意兩點間的距離為.公司擬按以下思路運作:先將兩處游客分別乘車集中到之間的中轉(zhuǎn)點(異于兩點),然后乘同一艘輪游輪前往島.據(jù)統(tǒng)計,每批游客處需發(fā)車2輛, 處需發(fā)車4輛,每輛汽車每千米耗費元,游輪每千米耗費元.(其中是正常數(shù))設,每批游客從各自報名點到島所需運輸成本為元.

(1) 寫出關于的函數(shù)表達式,并指出的取值范圍;

(2) 問:中轉(zhuǎn)點距離處多遠時, 最小?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2 sin(x+ )cos(x+ )+sin2x+a的最大值為1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將f(x)的圖象向左平移 個單位,得到函數(shù)g(x)的圖象,若方程g(x)=m在x∈[0, ]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)當時,求函數(shù)在點處的切線方程;

(2)討論函數(shù)的單調(diào)性;

(3)當時,求證:對任意,都有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,
(1)求f(x)的解析式及定義域;
(2)求f(x)的值域;
(3)若方程f(x)=a2﹣3a+3有實數(shù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=x2+bx+c且f(0)=f(2),則(
A.f(﹣2)<f(0)<f(
B.f( )<f(0)<f(﹣2)??
C.f( )<f(﹣2)<f(0)
D.f(0)<f( )<f(﹣2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,已知 , =(6,1), =(x,y), =(﹣2,﹣3).
(1)求用x表示y的關系式;
(2)若 ,求x、y值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓 =1(a>b>0)的離心率為 .A為橢圓上異于頂點的一點,點P滿足 = ,

(1)若點P的坐標為(2, ),求橢圓的方程;
(2)設過點P的一條直線交橢圓于B,C兩點,且 =m ,直線OA,OB的斜率之積﹣ ,求實數(shù)m的值;
(3)在(1)的條件下,是否存在定圓M,使得過圓M上任意一點T都能作出該橢圓的兩條切線,且這兩條切線互相垂直?若存在,求出定圓M;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案