某工廠現(xiàn)有80臺(tái)機(jī)器,每臺(tái)機(jī)器平均每天生產(chǎn)384件產(chǎn)品,現(xiàn)準(zhǔn)備增加一批同類機(jī)器以提高生產(chǎn)總量,在試生產(chǎn)中發(fā)現(xiàn),由于其他生產(chǎn)條件沒(méi)變,因此每增加一臺(tái)機(jī)器,每臺(tái)機(jī)器平均每天將少生產(chǎn)4件產(chǎn)品.
(1)如果增加x臺(tái)機(jī)器,每天的生產(chǎn)總量為y件,請(qǐng)你寫出y與x之間的函數(shù)關(guān)系式;
(2)增加多少臺(tái)機(jī)器,可以使每天的生產(chǎn)總量最大?最大生產(chǎn)總量是多少?
考點(diǎn):根據(jù)實(shí)際問(wèn)題選擇函數(shù)類型
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)生產(chǎn)總量=每臺(tái)機(jī)器生產(chǎn)的產(chǎn)品數(shù)×機(jī)器數(shù);
(2)根據(jù)函數(shù)性質(zhì)求最值.
解答: 解:(1)根據(jù)題意得:
y=(80+x)(384-4x)=-4x2+64x+30720(0<x<96);
(2)∵y=-4x2+64x+30720=-4(x2-16x+64)+256+30720=-4(x-8)2+30976,
∴當(dāng)x=8時(shí),y有最大值30976,
則增加8臺(tái)機(jī)器,可以使每天的生產(chǎn)總量最大,最大總量是30976件.
點(diǎn)評(píng):此題考查運(yùn)用二次函數(shù)的性質(zhì)結(jié)合圖象、解方程解決二次不等式的問(wèn)題,滲透了數(shù)形結(jié)合、方程與函數(shù)的解題思想和方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M點(diǎn)的坐標(biāo)為(x,y).
(1)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機(jī)取一個(gè)數(shù)作為x,從集合Q中取隨機(jī)取一個(gè)數(shù)作為y,求M點(diǎn)落在y軸的概率;
(2)設(shè)x∈[0,3],y∈[0,4],求點(diǎn)M落在不等式組:
x≥0
y≥0
x+2y-3≤0
x+y-2≤0
所表示的平面區(qū)域內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用秦九韶算法求多項(xiàng)式f(x)=1+2x+x2-3x3+2x4,當(dāng)X=-1時(shí)的值,該算法運(yùn)算次數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,該幾何體的體積是(  )
A、16π
B、16
C、
16π
3
D、
16
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a,b,c∈R,則下列命題正確的是( 。
A、若a2>b2,則a>b
B、若a<b,則ac<bc
C、若a>b,則
a
b
D、若a>c,b>d,則a+b>c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)f(x)中,滿足“對(duì)定義域內(nèi)的任意一個(gè)x都有f(-x)+f(x)=0,且在區(qū)間(0,+∞)上恒有
f′(x)>0”的是( 。
A、f(x)=
1
x
B、f(x)=x2
C、f(x)=x3
D、f(x)=ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:
(1)log2
2x2+2x+1
x+2
≤0;
(2)
|x-3|(x-2)
x2(x-1)
≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=mx2-2x+3只有一個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=(a-1)x在R上為減函數(shù),則a的取值范圍是( 。
A、a>0且a≠1B、a>2
C、a<2D、1<a<2

查看答案和解析>>

同步練習(xí)冊(cè)答案