20.已知0<α<$\frac{π}{2}$<β<π,tan$\frac{α}{2}=\frac{1}{2}$,cos(β-α)=$\frac{\sqrt{2}}{10}$.
(1)求sinα的值;
(2)求sinβ的值.

分析 (1)根據(jù)二倍角公式和同角的三角函數(shù)的關(guān)系即可求出,
(2)根據(jù)同角的三角函數(shù)的關(guān)系和兩角和的正弦公式即可求出.

解答 解:(1)tanα=$\frac{2tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$=$\frac{4}{3}$,
所以$\frac{sinα}{cosα}$=$\frac{4}{3}$.
又因為sin2α+cos2α=1,
解得sin α=$\frac{4}{5}$.
(2)因為0<α<$\frac{π}{2}$<β<π,
所以0<β-α<π.
因為cos(β-α)=$\frac{\sqrt{2}}{10}$,
所以sin(β-α)=$\frac{7\sqrt{2}}{10}$.
因為0<α<$\frac{π}{2}$,sin α=$\frac{4}{5}$.
所以cos α=$\frac{3}{5}$,
所以sin β=sin[(β-α)+α],
=sin(β-α)cos α+cos(β-α)sin α,
=$\frac{7\sqrt{2}}{10}$×$\frac{3}{5}$+$\frac{\sqrt{2}}{10}$×$\frac{4}{5}$=$\frac{\sqrt{2}}{2}$.

點評 本題考查了二倍角公式和兩角和的正弦公式以及同角的三角函數(shù)的關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知△ABC中cosA=$\frac{2\sqrt{5}}{5}$,cosB=$\frac{3\sqrt{10}}{10}$,O為△ABC內(nèi)心,2$\sqrt{5}$$\overrightarrow{OA}$+$\sqrt{10}$$\overrightarrow{OB}$+m$\overrightarrow{OC}$=$\overrightarrow{0}$,則m=( 。
A.5$\sqrt{2}$B.2$\sqrt{5}$C.3$\sqrt{10}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知a>0,b>0,c>0,用綜合法證明:$\frac{b+c}{a}$+$\frac{c+a}$+$\frac{a+b}{c}$≥6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)$f(x)=x•ln\frac{a}{x}\;\;(a>0)$.
(Ⅰ)若函數(shù)g(x)=ex在x=0處的切線也是函數(shù)f(x)圖象的一條切線,求實數(shù)a的值;
(Ⅱ)若函數(shù)f(x)的圖象恒在直線x-y+1=0的下方,求實數(shù)a的取值范圍;
(Ⅲ)若x1,x2∈($\frac{a}{e}$,$\frac{a}{2}$),且x1≠x2,判斷${({{x_1}+{x_2}})^4}$與a2x1x2的大小關(guān)系,并說明理由.
注:題目中e=2.71828…是自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知全集U={1,2,3,4,5,6,7},集合A={2,3,5,6},集合B={1,3,4,6,7},則集合A∩(∁UB)=( 。
A.{3,6}B.{2,5}C.{2,5,6}D.{2,3,5,6,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在復(fù)平面內(nèi),若復(fù)數(shù)z滿足|z+1|=|1+iz|,則z在復(fù)平面內(nèi)對應(yīng)點的軌跡是( 。
A.直線B.C.橢圓D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知$\overrightarrow{a}$,$\overrightarrow$的夾角是120°,且$\overrightarrow{a}$=(-2,-4),|$\overrightarrow$|=$\sqrt{5}$,則$\overrightarrow{a}$在$\overrightarrow$方向上的射影等于-$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知x>y>0,且x+y≤2,則$\frac{4}{x+3y}$+$\frac{1}{x-y}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)a,b,c為正數(shù),且a+$\frac{2}$+$\frac{c}{3}$=1.則3a2+2bc+2ac+3ab的最大值為3.

查看答案和解析>>

同步練習冊答案