【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,證明:

(3)若,直線與曲線相切,證明:.

(參考數(shù)據(jù):,

【答案】(1)上單調(diào)遞增, 在上單調(diào)遞減;(2)見證明;(3)見證明

【解析】

(1)先求得,利用當(dāng),得的單調(diào)遞增區(qū)間,由,得的單調(diào)遞減區(qū)間.

(2)分析可得0是的極小值點(diǎn),求得a,構(gòu)造函數(shù),利用導(dǎo)函數(shù)分析可得上單調(diào)遞減,在上單調(diào)遞增.則.

從而.

(3)設(shè)切點(diǎn)為,列出消掉k,得到.構(gòu)造函數(shù),分析可得.

構(gòu)造,分析得到為增函數(shù),可得.得到.

(1).

當(dāng),得,則上單調(diào)遞增;

當(dāng),得,則上單調(diào)遞減.

(2)因?yàn)?/span>,所以,則0是的極小值點(diǎn).

由(1)知,則.

設(shè)函數(shù),則.

設(shè)函數(shù),則.易知.

恒成立.

,得;令,得.

上單調(diào)遞減,在上單調(diào)遞增.

.

從而,即.

(3)設(shè)切點(diǎn)為,

當(dāng)時(shí),

.

.

設(shè)函數(shù),

,則為增函數(shù).

,,

.

設(shè),則.

,則,為增函數(shù).

.又.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開展了冰雪答題王冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.

(Ⅰ)求的值;

(Ⅱ)記表示事件從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于80,估計(jì)的概率;

(Ⅲ)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為優(yōu)秀,比賽成績(jī)低于80分為非優(yōu)秀.請(qǐng)?jiān)诖痤}卡上將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為比賽成績(jī)是否優(yōu)秀與性別有關(guān)?

參考公式及數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某年級(jí)組織學(xué)生參加了某項(xiàng)學(xué)術(shù)能力測(cè)試,為了解參加測(cè)試學(xué)生的成績(jī)情況,從中隨機(jī)抽取20名學(xué)生的測(cè)試成績(jī)作為樣本,規(guī)定成績(jī)大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀.統(tǒng)計(jì)結(jié)果如圖:

(1)求的值和樣本的平均數(shù);

(2)從該樣本成績(jī)優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績(jī)至少有一個(gè)落在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,,其中的導(dǎo)函數(shù).

1)令,,,猜想的表達(dá)式,并給出證明;

2)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,過的直線與橢圓交于兩點(diǎn),已知點(diǎn)的坐標(biāo)為.

(Ⅰ)當(dāng)軸垂直時(shí),求點(diǎn)A、B的坐標(biāo)及的值

(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,,的中點(diǎn),點(diǎn)在平面內(nèi)的射影在線段上.

(1)求證:

(2)若是正三角形,求三棱柱的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案