【題目】已知f(x)=e2x+ln(x+a).
(1)當a=1時,①求f(x)在(0,1)處的切線方程;②當x≥0時,求證:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求實數(shù)a的取值范圍.

【答案】
(1)解:a=1時,f(x)=e2x+ln(x+1),f′(x)=2e2x+

①可得f(0)=1,f′(0)=2+1=3,

所以f(x)在(0,1)處的切線方程為y=3x+1;

②證明:設F(x)=e2x+ln(x+1)﹣(x+1)2﹣x(x≥0),

F′(x)=2e2x+ ﹣2(x+1)﹣1

F″(x)=4e2x ﹣2=[e2x﹣﹣ ]+2(e2x﹣1)+e2x>0,(x≥0),

所以,F(xiàn)′(x)在[0,+∞)上遞增,所以F′(x)≥F′(0)=0,

所以,F(xiàn)(x)在[0,+∞)上遞增,所以F(x)≥F(0)=0,

即有當x≥0時,f(x)≥(x+1)2+x


(2)解:存在x0∈[0,+∞),使得 成立

存在x0∈[0,+∞),使得e ﹣ln(x0+a)﹣x02<0,

設u(x)=e2x﹣ln(x+a)﹣x2,

u′(x)=2e2x ﹣2x,u″(x)=4e2x+ ﹣2>0,

可得u′(x)在[0,+∞)單調(diào)增,即有u′(x)≥u′(0)=2﹣

①當a≥ 時,u′(0)=2﹣ ≥0,

可得u(x)在[0,+∞)單調(diào)增,

則u(x)min=u(0)=1﹣lna<0,

解得a>e;

②當a< 時,ln(x+a)<ln(x+ ),

設h(x)=x﹣ ﹣ln(x+ ),(x>0),

h′(x)=1﹣ = ,

另h′(x)>0可得x> ,h′(x)<0可得0<x< ,

則h(x)在(0, )單調(diào)遞減,在( ,+∞)單調(diào)遞增.

則h(x)≥h( )=0./p>

設g(x)=e2x﹣x2﹣(x﹣ ),(x>0),

g′(x)=2e2x﹣2x﹣1,

g″(x)=4e2x﹣2>4﹣2>0,

可得g′(x)在(0,+∞)單調(diào)遞增,

即有g′(x)>g′(0)=1>0,

則g(x)在(0,+∞)單調(diào)遞增,

則g(x)>g(0)>0,

則e2x﹣x2>x﹣ >ln(x+ )>ln(x+a),

則當a< 時,f(x)>2ln(x+a)+x2恒成立,不合題意.

綜上可得,a的取值范圍為(e,+∞)


【解析】(1)①求出f(x)的導數(shù),可得切線的斜率,由斜截式方程即可得到所求切線的方程;②設F(x)=e2x+ln(x+1)﹣(x+1)2﹣x(x≥0),通過兩次求導,判斷F(x)的單調(diào)性,即可得證;(2)由題意可得存在x0∈[0,+∞),使得e ﹣ln(x0+a)﹣x02<0,設u(x)=e2x﹣ln(x+a)﹣x2 , 兩次求導,判斷單調(diào)性,對a討論,分①當a≥ 時,②當a< 時,通過構造函數(shù)和求導,得到單調(diào)區(qū)間,可得最值,即可得到所求a的范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直四棱柱ABCD—A1B1C1D1中,AA1=2,底面ABCD是直角梯形,∠A為直角,AB∥CD,AB=4,AD=2,DC=2.

(Ⅰ)求線段BC1的長度;

(Ⅱ)異面直線BC1與DC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x),x∈R.

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;

(2)求函數(shù)f(x)在區(qū)間[-,]上的最小值和最大值,并求出取得最值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查甲、乙兩種品牌商品的市場認可度,在某購物網(wǎng)點隨機選取了14天,統(tǒng)計在某確定時間段的銷量,得如下所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖求:

1)甲、乙兩種品牌商品銷量的中位數(shù)分別是多少?

2)甲品牌商品銷量在[2050]間的頻率是多少?

3)甲、乙兩個品牌商品哪個更受歡迎?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知m,n為兩條不同的直線,,為兩個不同的平面,則下列命題中正確的有  

,,, ,

,, ,

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中心在原點的橢圓C1與雙曲線C2具有相同的焦點,F(xiàn)1(﹣c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點,|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率 ,則雙曲線的離心率e2的范圍是(
A.
B.
C.(2,3)
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足 ,則{an}的前50項的和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的焦點是橢圓的頂點, 為橢圓的左焦點且橢圓經(jīng)過點.

1)求橢圓的方程;

2)過橢圓的右頂點作斜率為的直線交橢圓于另一點連結并延長交橢圓于點,的面積取得最大值時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,圓C的極坐標方程為
(1)求圓C的直角坐標方程;
(2)若P(x,y)是直線l與圓面 的公共點,求 的取值范圍.

查看答案和解析>>

同步練習冊答案