【題目】已知m,n為兩條不同的直線,,為兩個(gè)不同的平面,則下列命題中正確的有
,,, ,
,, ,
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3
【答案】B
【解析】
分析:由線面垂直的幾何特征,及線面垂直的第二判定定理,可判斷A的真假;
根據(jù)面面平行的幾何特征及線線位置關(guān)系的定義,可判斷B的真假;
根據(jù)線面垂直及線線垂直的幾何特征,及線面平行的判定方法,可判斷C的真假;
根據(jù)面面平行的判定定理,可以判斷D的真假.
詳解:
由mα,nα,m∥β,n∥β,若a,b相交,則可得α∥β,若a∥b,則α與β可能平行也可能相交,故(1)錯(cuò)誤;
若m∥n,n⊥α根據(jù)線面垂直的第二判定定理可得m⊥α,故(2)正確;
若α∥β,mα,nβ,則m∥n或m,n異面,故(3)錯(cuò)誤;
若m⊥α,m⊥n,則n∥α或nα,故(4)錯(cuò)誤;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)判斷在定義域上的單調(diào)性并加以證明;
(Ⅲ)若對(duì)于任意的,不等式恒成立, 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】旅行社為某旅行團(tuán)包飛機(jī)去旅游,其中旅行社的包機(jī)費(fèi)為元.旅行團(tuán)中的每個(gè)人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅行團(tuán)的人數(shù)不超過人時(shí),飛機(jī)票每張收費(fèi)元;若旅行團(tuán)的人數(shù)多于人時(shí),則予以優(yōu)惠,每多人,每個(gè)人的機(jī)票費(fèi)減少元,但旅行團(tuán)的人數(shù)最多不超過人.設(shè)旅行團(tuán)的人數(shù)為人,飛機(jī)票價(jià)格元,旅行社的利潤(rùn)為元.
(1)寫出飛機(jī)票價(jià)格元與旅行團(tuán)人數(shù)之間的函數(shù)關(guān)系式;
(2)當(dāng)旅行團(tuán)人數(shù)為多少時(shí),旅行社可獲得最大利潤(rùn)?求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中不正確的是( )
A. 對(duì)于線性回歸方程,直線必經(jīng)過點(diǎn)
B. 莖葉圖的優(yōu)點(diǎn)在于它可以保存原始數(shù)據(jù),并且可以隨時(shí)記錄
C. 將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一常數(shù)后,方差恒不變
D. 擲一枚均勻硬幣出現(xiàn)正面向上的概率是,那么一枚硬幣投擲2次一定出現(xiàn)正面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,某重點(diǎn)高中數(shù)學(xué)教師對(duì)新入學(xué)的45名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時(shí)間不少于15小時(shí)的有19人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績(jī)不足120分的占 ,統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表:
分?jǐn)?shù)大于等于120分 | 分?jǐn)?shù)不足120分 | 合計(jì) | |
周做題時(shí)間不少于15小時(shí) | 4 | 19 | |
周做題時(shí)間不足15小時(shí) | |||
合計(jì) | 45 |
(Ⅰ)請(qǐng)完成上面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間有關(guān)”;
(Ⅱ)( i)按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到的不足120分且周做題時(shí)間不足15小時(shí)的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
( ii)若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機(jī)抽取20人,求這些人中周做題時(shí)間不少于15小時(shí)的人數(shù)的期望和方差.
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=e2x+ln(x+a).
(1)當(dāng)a=1時(shí),①求f(x)在(0,1)處的切線方程;②當(dāng)x≥0時(shí),求證:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的漸近線方程為,左焦點(diǎn)為F,過的直線為,原點(diǎn)到直線的距離是
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的兩點(diǎn)C,D,問是否存在實(shí)數(shù),使得以CD為直徑的圓經(jīng)過雙曲線的左焦點(diǎn)F。若存在,求出m的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的標(biāo)準(zhǔn)方程是.
(1)求它的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)直線過已知拋物線的焦點(diǎn)且傾斜角為45°,且與拋物線的交點(diǎn)為,求的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】朱載堉(1536~1611),是中國(guó)明代一位杰出的音樂家、數(shù)學(xué)家和天文歷算家,他的著作《律學(xué)新說》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一組音(八度)分成十二個(gè)半音音程的律制,各相鄰兩律之間的頻率之比完全相等,亦稱“十二等程律”.即一個(gè)八度13個(gè)音,相鄰兩個(gè)音之間的頻率之比相等,且最后一個(gè)音是最初那個(gè)音的頻率的2倍.設(shè)第三個(gè)音的頻率為,第七個(gè)音的頻率為,則=
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com