已知數(shù)列滿足,(且).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,記數(shù)列的前項(xiàng)和為,若恒為一個(gè)與無關(guān)的常數(shù),試求常數(shù)和.
(Ⅰ);(Ⅱ),.
解析試題分析:(Ⅰ)求數(shù)列的通項(xiàng)公式,這是已知型求,可仿來求,由,可⇒,二式作差可得,即,再求得即可判斷數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,從而可求數(shù)列的通項(xiàng)公式;(Ⅱ)由(Ⅰ)得,,求得,由等差數(shù)列的概念可判斷是以為首項(xiàng),以為公差的等差數(shù)列,由對(duì)任意正整數(shù)恒成立,即恒為一個(gè)與n無關(guān)的常數(shù)λ可得到關(guān)于λ的方程組,解之即可.
試題解析:(Ⅰ)由題 ①
②
由①②得:,即 3分
當(dāng)時(shí),,,,
所以,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列
故() 6分
(Ⅱ),
,
是以為首項(xiàng),以為公差的等差數(shù)列, 8分
10分
恒為一個(gè)與無關(guān)的常數(shù),
解之得:, . 12分
考點(diǎn):等差數(shù)列的通項(xiàng)公式,等比數(shù)列的通項(xiàng)公式,數(shù)列的求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),設(shè)曲線在點(diǎn)處的切線與軸的交點(diǎn)為,其中為正實(shí)數(shù).
(1)用表示;
(2),若,試證明數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)若數(shù)列的前項(xiàng)和,記數(shù)列的前項(xiàng)和,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項(xiàng),公差.且分別是等比數(shù)列的.
(1)求數(shù)列與的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意自然數(shù)均有 成立,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和是,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求適合方程 的正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,.
(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),將函數(shù)在區(qū)間內(nèi)的全部極值點(diǎn)按從小到大的順序排成數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項(xiàng)和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的正整數(shù)n的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com