5.下列說法正確的是( 。
A.零向量沒有方向B.單位向量都相等
C.任何向量的模都是正實數(shù)D.共線向量又叫平行向量

分析 根據(jù)零向量,單位向量、共線向量、平行向量的定義即可判斷出結(jié)論.

解答 解:零向量的方向是任意的;單位向量的模為1,但是不一定相等;零向量的模是0;共線向量又叫平行向量.
因此只有D正確.
故選:D.

點評 本題考查了零向量,單位向量、共線向量、平行向量的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△OMN中,點A在OM上,點B在ON上,且AB∥MN,2OA=OM,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則終點P落在四邊形ABNM內(nèi)(含邊界)時,$\frac{y+x+2}{x+1}$的取值范圍為[$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,A=$\frac{π}{3}$,AB=2,且△ABC的面積為$\frac{\sqrt{3}}{2}$,則邊AC的長為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,一個幾何體的三視圖如圖所示(正視圖、側(cè)視圖和俯視圖)為兩個等腰直角三角形和一個邊長為a的正方形,則其外接球的體積為( 。
A.$\frac{{\sqrt{3}}}{2}π{a^3}$B.$\frac{{\sqrt{3}}}{2}a$C.$\frac{1}{2}{a^3}$D.$\frac{1}{2}π{a^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.$y=sin({ωx+\frac{5π}{6}})({0<ω<π})$的圖象與坐標(biāo)軸的所有交點中,距離原點最近的兩個點為$({0,\frac{1}{2}})$和$({\frac{1}{2},0})$,那么該函數(shù)圖象的所有對稱軸中,距離y軸最近的一條對稱軸是( 。
A.x=-1B.$x=-\frac{1}{2}$C.x=1D.$x=\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)復(fù)數(shù)z滿足條件|z-(2-2i)|=1,那么z對應(yīng)的點的軌跡是( 。
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖為函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分圖象.
(1)求函數(shù)解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)若方程f(x)=m在$[{-\frac{π}{2},0}]$上有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐A-BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分別在線段AB,AC上,AP=3PB,AQ=2QC,M是BD的中點.
(1)證明:DQ∥平面CPM;
(2)若二面角C-AB-D的大小為$\frac{π}{3}$,求tan∠BDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,A=60°,b=1,面積為$\sqrt{3}$,則$\frac{a+2b-3c}{sinA+2sinB-3sinC}$=$\frac{{2\sqrt{39}}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案