10.某學(xué)校的組織結(jié)構(gòu)圖如下:

則保衛(wèi)科的直接領(lǐng)導(dǎo)是副校長乙.

分析 根據(jù)題意,在某校的組織結(jié)構(gòu)圖中,可分析出保衛(wèi)科的直接領(lǐng)導(dǎo)為副校長乙,從而得出答案.

解答 解:由結(jié)構(gòu)圖可知,保衛(wèi)科的直接領(lǐng)導(dǎo)為副校長乙.
故答案為:副校長乙.

點(diǎn)評 本題考查了結(jié)構(gòu)圖的應(yīng)用問題,解題時應(yīng)讀懂題目中的結(jié)構(gòu)圖,分析出父子節(jié)點(diǎn)之間的從屬關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)在[m,n](m<n)上的值域恰好為[m,n](m<n),則稱[m,n]為函數(shù)f(x)的一個“等值映射區(qū)間”,已知下列函數(shù):(1)y=x2-1;(2)y=2+log2x;(3)y=2x-1;(4)y=$\frac{1}{x-1}$.其中,存在唯一一個“等值映射區(qū)間”的函數(shù)序號為(2),(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=cos(2x+φ),且${∫}_{0}^{\frac{2}{3}π}$f(x)dx=0,則下列說法正確的是( 。
A.f(x)的一條對稱軸為x=$\frac{5π}{12}$
B.存在φ使得f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞減
C.f(x)的一個對稱中心為($\frac{5π}{12}$,0)
D.存在φ使得f(x)在區(qū)間[$\frac{π}{12}$,$\frac{7π}{12}$]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在公元前3世紀(jì),古希臘歐幾里得在《幾何原本》里提出:“球的體積(V)與它的直徑(D)的立方成正比”,此即V=kD3,歐幾里得未給出k的值.17世紀(jì)日本數(shù)學(xué)家們對求球的體積的方法還不了解,他們將體積公式V=kD3中的常數(shù)k稱為“立圓率”或“玉積率”.類似地,對于等邊圓柱(軸截面是正方形的圓柱)、正方體也可利用公式V=kD3求體積(在等邊圓柱中,D表示底面圓的直徑;在正方體中,D表示棱長).假設(shè)運(yùn)用此體積公式求得球(直徑為a)、等邊圓柱(底面圓的直徑為a)、正方體(棱長為a)的“玉積率”分別為k1,k2,k3,那么k1:k2:k3=$\frac{π}{6}$:$\frac{π}{4}$:1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,平面ABEF⊥平面CBED,四邊形ABEF為直角梯形,∠AFE=∠FEB=90°,四邊形CBED為等腰梯形,CD∥BE,且BE=2AF=2CD=2BC=2EF=4.
(Ⅰ)若梯形CBED內(nèi)有一點(diǎn)G,使得FG∥平面ABC,求點(diǎn)G的軌跡;
(Ⅱ)求平面ABC與平面ACDF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知圓過(1,2),(-3,2)和(-1,2$\sqrt{2}$).
(1)求圓的方程;
(2)若過點(diǎn)P(-1,2)的弦AB長為2$\sqrt{7}$,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B 有α=$\frac{A+B}{2}$,β=$\frac{A-B}{2}$
代入③得 sinA+sinB=2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$.
類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:
cosA-cosB=-2sin$\frac{A+B}{2}$sin$\frac{A-B}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.“開門大吉”是某電視臺推出的游戲節(jié)目,選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金,在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.
(Ⅰ)寫出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對歌曲名稱是否與年齡有關(guān);說明你的理由:(下面的臨界值表供參考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(Ⅱ)現(xiàn)計(jì)劃在這次場外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中在20~30歲之間的人數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.將一枚質(zhì)地均勻的骰子拋擲兩次,落地時朝上的點(diǎn)數(shù)之和為6的概率為( 。
A.$\frac{5}{36}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{1}{9}$

查看答案和解析>>

同步練習(xí)冊答案