【題目】已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).

(1)證明上的偶函數(shù)

2若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)證明見(jiàn)解析;(2).

【解析】試題分析:(1) ,根據(jù)函數(shù)奇偶性的定義即可得上的偶函數(shù);(2)利用參數(shù)分離法,將不等式,上恒成立,進(jìn)行轉(zhuǎn)化為對(duì)任意恒成立 ,利用函數(shù)的單調(diào)性求最值即可求從實(shí)數(shù)的取值范圍.

試題解析:(1)因?yàn)閷?duì)任意,都有 ,

所以R上的偶函數(shù).

(2)由條件知上恒成立,

,則對(duì)任意 ,

所以對(duì)任意成立 ,

由對(duì)勾函數(shù)的單調(diào)性知 ,

所以 ,

因此,實(shí)數(shù)的取值范圍是.

【方法點(diǎn)晴】本題主要考查函數(shù)的奇偶性、單調(diào)性以及不等式恒成立問(wèn)題,屬于難題.不等式恒成立問(wèn)題常見(jiàn)方法: 分離參數(shù)恒成立()恒成立(即可); 數(shù)形結(jié)合(圖象在 上方即可); 討論最值恒成立; 討論參數(shù).本題是利用方法 求得實(shí)數(shù)的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的奇函數(shù),且時(shí), ,則函數(shù)為自然對(duì)數(shù)的底數(shù))的零點(diǎn)個(gè)數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖暅原理:“冪勢(shì)既同,則積不容異”.它是中國(guó)古代一個(gè)涉及幾何體體積的問(wèn)題,意思是兩個(gè)同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)為兩個(gè)同高的幾何體,的體積不相等,在等高處的截面積不恒相等,根據(jù)祖暅原理可知,的( )

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列集合間的關(guān)系:

(1)A{x|x32},B{x|2x5≥0}

(2)A{xZ|1≤x<3},B{x|x|y|,yA}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)為30/件的商品在市場(chǎng)試銷(xiāo)中發(fā)現(xiàn),此商品的銷(xiāo)售單價(jià)x元與日銷(xiāo)售量y件之間有如下所表示的關(guān)系.

x

30

40

45

50

y

60

30

15

0

(1)在所給的坐標(biāo)系中,如圖,根據(jù)表格提供的數(shù)據(jù)描出實(shí)數(shù)對(duì)(x,y)的對(duì)應(yīng)點(diǎn),并確定yx的一個(gè)函數(shù)關(guān)系式yf(x);

(2)設(shè)經(jīng)營(yíng)此商品的日銷(xiāo)售利潤(rùn)為P,根據(jù)上述關(guān)系寫(xiě)出P關(guān)于x的函數(shù)關(guān)系式,并指出銷(xiāo)售單價(jià)x為多少時(shí)才能獲得最大日銷(xiāo)售利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合其中,集合.

(1)若,求實(shí)數(shù)的取值范圍;

(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,它在點(diǎn)處的切線為直線

(Ⅰ)求直線的直角坐標(biāo)方程;

(Ⅱ)已知點(diǎn)為橢圓上一點(diǎn),求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0. 若B的坐標(biāo)為(1,2),求△ABC三邊所在直線方程及點(diǎn)C坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)市場(chǎng)分析,南雄市精細(xì)化工園某公司生產(chǎn)一種化工產(chǎn)品,當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本y(萬(wàn)元)可以看成月產(chǎn)量x()的二次函數(shù);當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬(wàn)元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬(wàn)元,為二次函數(shù)的頂點(diǎn).寫(xiě)出月總成本y(萬(wàn)元)關(guān)于月產(chǎn)量x()的函數(shù)關(guān)系.已知該產(chǎn)品銷(xiāo)售價(jià)為每噸1.6萬(wàn)元,那么月產(chǎn)量為多少時(shí),可獲最大利潤(rùn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案