設(shè)函數(shù).
(Ⅰ)若在x=處的切線與直線4x+y=0平行,求a的值;
(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為,證明.
(I)a=-6;(Ⅱ)①當(dāng)a≥0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞);②當(dāng)a<0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,+∞);(Ⅲ)詳見解析.
解析試題分析:(I)f(x)的圖象在x=處的切線與直線4x+y=0平行,則,求導(dǎo)、代入此式即可得a的值;(Ⅱ)求導(dǎo)得,由x>0,知>0,故只需考慮的符號.當(dāng)a≥0時(shí),對任意x>0,>0恒成立,函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞).當(dāng)a<0時(shí),令=0,解得,由此可得函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,+∞);(Ⅲ)因?yàn)楹瘮?shù)的圖象與x軸交于A、B兩點(diǎn),由(Ⅱ)知必有 .不妨設(shè)A(,0),B(,0),且,
因?yàn)楹瘮?shù)f(x)在(,+∞)上單調(diào)遞減,于是要證<0成立,只需證:即.這個(gè)不等式怎么證?這是一個(gè)很常見的問題,都是將a換掉,只留,,然后將這個(gè)不等式變形為含的不等式,然后令,再利用導(dǎo)數(shù)證明.
試題解析:(I)由題知f(x)=2ax2+(a+4)x+lnx的定義域?yàn)?0,+∞),
且.
又∵f(x)的圖象在x=處的切線與直線4x+y=0平行,
∴,
解得a=-6. 4分
(Ⅱ),
由x>0,知>0.
①當(dāng)a≥0時(shí),對任意x>0,>0,
∴此時(shí)函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞).
②當(dāng)a<0時(shí),令=0,解得,
當(dāng)時(shí),>0,當(dāng)時(shí),<0,
此時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,+∞). 9分
(Ⅲ)不妨設(shè)A(,0),B(,0),且,由(Ⅱ)知,
于是要證<0成立,只需證:即.
∵, ①
, ②
①-②得,
即,
∴,
故只需證,
即證明,
即證明,變形為,
設(shè),令,
則,
顯然當(dāng)t>0時(shí),≥0,當(dāng)且僅當(dāng)t=1時(shí),=0,
∴g(t)在(0,+∞)上是增函數(shù).
又∵g(1)=0,
∴當(dāng)t∈(0,1)時(shí),g(t)<0總成立,命題得證. 14分
考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、利用導(dǎo)數(shù)解決不等式問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x3-x2+6x-a.
(1)對于任意實(shí)數(shù)x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中.
(Ⅰ)若,求函數(shù)的極值點(diǎn);
(Ⅱ)若在區(qū)間內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù);
(Ⅰ)求證:函數(shù)在上單調(diào)遞增;
(Ⅱ)設(shè),若直線PQ∥x軸,求P,Q兩點(diǎn)間的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,現(xiàn)要在邊長為的正方形內(nèi)建一個(gè)交通“環(huán)島”.正方形的四個(gè)頂點(diǎn)為圓心在四個(gè)角分別建半徑為(不小于)的扇形花壇,以正方形的中心為圓心建一個(gè)半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.
(1)求的取值范圍;(運(yùn)算中取)
(2)若中間草地的造價(jià)為元,四個(gè)花壇的造價(jià)為元,其余區(qū)域的造價(jià)為元,當(dāng)取何值時(shí),可使“環(huán)島”的整體造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a,b為常數(shù),a¹0,函數(shù).
(1)若a=2,b=1,求在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數(shù);
②若,,且在區(qū)間[1,2]上是增函數(shù),求由所有點(diǎn)形成的平面區(qū)域的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù)),其圖象是曲線.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,若存在唯一的實(shí)數(shù),使得與同時(shí)成立,求實(shí)數(shù)的取值范圍;
(3)已知點(diǎn)為曲線上的動點(diǎn),在點(diǎn)處作曲線的切線與曲線交于另一點(diǎn),在點(diǎn)處作曲線的切線,設(shè)切線的斜率分別為.問:是否存在常數(shù),使得?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)=。
(1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值;
(3)在(1)的條件下,設(shè)=+,
求證: (),參考數(shù)據(jù):。(13分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com