分析 (1)利用二倍角公式、兩角和公式和輔助角公式將函數(shù)化為y=Asin(ωx+φ)的形式,可得函數(shù)f(x)的解析式,再利用周期公式求函數(shù)的最小正周期.
(2)當(dāng)x∈[0,$\frac{π}{3}$]時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的取值最大和最小值,即得到函數(shù)f(x)的值域.
解答 解:(1)函數(shù)f(x)=sin2x-$\frac{{\sqrt{3}}}{2}$sin2x
=$\frac{1}{2}$$-\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}sin2x$
=$\frac{1}{2}-sin(2x+\frac{π}{6})$,
最小正周期$T=\frac{2π}{ω}=\frac{2π}{2}=π$;
所以函數(shù)f(x)的解析式為簡$f(x)=-sin(2x+\frac{π}{6})+\frac{1}{2}$;最小正周期T=π.
(2)由(1)得知$f(x)=-sin(2x+\frac{π}{6})+\frac{1}{2}$;
當(dāng)x∈[0,$\frac{π}{3}$]時(shí),那么:$\frac{π}{6}≤2x+\frac{π}{6}≤\frac{5π}{6}$,
∴$\frac{1}{2}≤sin(2x+\frac{π}{6})≤1$
∴$-\frac{1}{2}≤f(x)≤0$
∴函數(shù)f(x)的值域是$[{-\frac{1}{2},0}]$.
點(diǎn)評(píng) 本題考查了三角函數(shù)圖象及性質(zhì)的綜合運(yùn)用能力和計(jì)算能力,對(duì)三角函數(shù)的理解,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | $\frac{4}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 商品銷售收入與商品的廣告支出經(jīng)費(fèi)之間具有相關(guān)關(guān)系 | |
B. | 線性回歸方程對(duì)應(yīng)的直線$\hat y=\hat bx+\hat a$,至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1,y1),(x2,y2),…,(xn,yn)中的一個(gè)點(diǎn) | |
C. | 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄,其模型擬合的精度越高 | |
D. | 在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com