已知函數(shù),()
(1)若函數(shù)存在極值點,求實數(shù)b的取值范圍;
(2)求函數(shù)的單調區(qū)間;
(3)當且時,令,(),()為曲線y=上的兩動點,O為坐標原點,能否使得是以O為直角頂點的直角三角形,且斜邊中點在y軸上?請說明理由。
(1)
(2)當時,,函數(shù)的單調遞增區(qū)間為;
當時,,函數(shù)的單調遞減區(qū)間為,單調遞增區(qū)間為。
(3)對任意給定的正實數(shù),曲線上總存在兩點,使得是以O為直角頂點的直角三角形,且斜邊中點在y軸上
解析試題分析:解:(Ⅰ),若存在極值點,則有兩個不相等實數(shù)根。所以, 2分
解得 3分
(Ⅱ) 4分
當時,,函數(shù)的單調遞增區(qū)間為; 5分
當時,,函數(shù)的單調遞減區(qū)間為,單調遞增區(qū)間為。
7分
(Ⅲ) 當且時,假設使得是以O為直角頂點的直角三角形,且斜邊中點在y軸上。則且。 8分
不妨設。故,則。,該方程有解 9分
當時,則,代入方程得即,而此方程無實數(shù)解; 10分
當時,則; 11分
當時,則,代入方程得即, 12分
設,則在上恒成立。在上單調遞增,從而,則值域為。
當時,方程有解,即方程有解。 13分
綜上所述,對任意給定的正實數(shù),曲線上總存在兩點,使得是以O為直角頂點的直角三角形,且斜邊中點在y軸上。 14分
考點:導數(shù)的運用
點評:主要是考查了導數(shù)在研究函數(shù)單調性以及函數(shù)與方程思想的綜合運用,屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)試問該函數(shù)能否在處取到極值?若有可能,求實數(shù)的值;否則說明理由;
(2)若該函數(shù)在區(qū)間上為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù),記的導函數(shù),的導函數(shù)
,
的導函數(shù),…,的導函數(shù),.
(1)求;
(2)用n表示;
(3)設,是否存在使最大?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設命題p:函數(shù)的定義域為R;命題q:不等式對任意恒成立.
(Ⅰ)如果p是真命題,求實數(shù)的取值范圍;
(Ⅱ)如果命題“p或q”為真命題且“p且q”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定義在實數(shù)集上的函數(shù),,其導函數(shù)記為,
(1)設函數(shù),求的極大值與極小值;
(2)試求關于的方程在區(qū)間上的實數(shù)根的個數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com