.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當恒成立,求的取值范圍。

(1)單調(diào)增區(qū)間為  單調(diào)減區(qū)間為(2)

解析試題分析:解:(1)由 得
所以函數(shù)的單調(diào)增區(qū)間為,  單調(diào)減區(qū)間為
(2)根據(jù)上一步知函數(shù)在區(qū)間上遞增,在區(qū)間上遞減,在區(qū)間上遞增
,所以在區(qū)間
要使恒成立,只需即可。
考點:導數(shù)的應用
點評:導數(shù)常應用于求曲線的切線方程、求函數(shù)的最值與單調(diào)區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。本題是應用導數(shù)求函數(shù)的單調(diào)區(qū)間和解決不等式中參數(shù)的取值范圍。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)若當時,恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=2﹣|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是奇函數(shù)。
(1)求實數(shù)a的值;
(2)判斷函數(shù)在R上的單調(diào)性并用定義法證明;
(3)若函數(shù)的圖像經(jīng)過點,這對任意不等式恒成立,求實數(shù)m的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)若函數(shù)上有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其中為常數(shù).
(Ⅰ)當時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)當時,求的極值點并判斷是極大值還是極小值;
(Ⅲ)求證對任意不小于3的正整數(shù),不等式都成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),請用定義證明上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且
(1)求
(2)判斷的奇偶性;
(3)判斷上的單調(diào)性,并證明。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)若函數(shù)存在極值點,求實數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當時,令,(),()為曲線y=上的兩動點,O為坐標原點,能否使得是以O為直角頂點的直角三角形,且斜邊中點在y軸上?請說明理由。

查看答案和解析>>

同步練習冊答案