A. | $\frac{1}{5}$ | B. | $\frac{1}{5}$i | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{5}$i |
分析 先由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡$\frac{x}{1-i}$,再由復(fù)數(shù)相等的條件求出實(shí)數(shù)x、y的值,得到復(fù)數(shù)z,求出$\overline{z}$,再由復(fù)數(shù)求模公式得到|z|,代入$\frac{|z|}{\overline{z}}$,然后運(yùn)用復(fù)數(shù)的除法運(yùn)算化簡即可得答案.
解答 解:∵復(fù)數(shù)z=x+yi(x、y∈R),且有$\frac{x}{1-i}$=1+yi,
∴$\frac{x}{1-i}=\frac{x(1+i)}{(1-i)(1+i)}=\frac{x(1+i)}{2}=1+yi$.
∴x+xi=2+2yi
∴x=2y=2.
解得:y=1,x=2.
則z=2+i,|z|=|2+i|=$\sqrt{5}$,$\overline{z}=2-i$.
∴$\frac{|z|}{\overline{z}}$=$\frac{\sqrt{5}}{2-i}=\frac{\sqrt{5}(2+i)}{(2-i)(2+i)}=\frac{2\sqrt{5}+\sqrt{5}i}{5}$=$\frac{2\sqrt{5}}{5}+\frac{\sqrt{5}}{5}i$.
則$\frac{|z|}{\overline{z}}$的虛部為:$\frac{\sqrt{5}}{5}$.
故選:C.
點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了兩個(gè)復(fù)數(shù)相等的條件,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5x+3y-25=0 | B. | 5x-3y-25=0 | C. | 3x-5y-25=0 | D. | 5x-3y+25=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{s}$=(1,0,1),$\overrightarrow{n}$=(1,0,-1) | B. | $\overrightarrow{s}$=(1,1,1),$\overrightarrow{n}$=(1,1,-2) | ||
C. | $\overrightarrow{s}$=(2,1,1),$\overrightarrow{n}$=(-4,-2,-2) | D. | $\overrightarrow{s}$=(1,3,1),$\overrightarrow{n}$=(2,0,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,0] | C. | (0,1] | D. | [-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>