【題目】若函數(shù)f(x)滿足f(logax)=·(x)(其中a>0且a≠1).

(1)求函數(shù)f(x)的解析式,并判斷其奇偶性和單調性;

(2)當x∈(-∞,2)時,f(x)-4的值恒為負數(shù),求a的取值范圍.

【答案】(1)見解析.(2)[2-,1)∪(1,2+].

【解析】 試題分析:(1)利用換元法求函數(shù)解析式,注意換元時元的范圍,再根據(jù)奇偶性定義判斷函數(shù)奇偶性,最后根據(jù)復合函數(shù)單調性性質判斷函數(shù)單調性(2)不等式恒成立問題一般轉化為對應函數(shù)最值問題:即f(x)最大值小于4,根據(jù)函數(shù)單調性確定函數(shù)最大值,自在解不等式可得a的取值范圍.

試題解析:

(1)令logaxt(t∈R),則xat

f(t)= (atat).

f(x)= (axax)(x∈R).

f(-x)= (axax)=- (axax)=-f(x),∴f(x)為奇函數(shù).

a>1時,yax為增函數(shù),y=-ax為增函數(shù),且>0,

f(x)為增函數(shù).

當0<a<1時,yax為減函數(shù),y=-ax為減函數(shù),且<0,

f(x)為增函數(shù).∴f(x)在R上為增函數(shù).

(2)∵f(x)是R上的增函數(shù),∴yf(x)-4也是R上的增函數(shù).

x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒為負數(shù),

只需f(2)-4≤0,即 (a2a-2)≤4.

()≤4,∴a2+1≤4a,∴a2-4a+1≤0,

∴2-a≤2+.又a≠1,

a的取值范圍為[2-1)∪(1,2]

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過原點的直線與橢圓交于兩點,點為橢圓上不同于的一點,直線的斜率均存在,且直線的斜率之積為.

(1)求橢圓的離心率;

(2)設分別為橢圓的左、右焦點,斜率為的直線經(jīng)過橢圓的右焦點,且與橢圓交于兩點.若點在以為直徑的圓內(nèi)部,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)對一切實數(shù)都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,設:當時,不等式 恒成立;Q:當時,是單調函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務.該地區(qū)某高級中學一興趣小組由20名高二級學生和15名高一級學生組成,現(xiàn)采用分層抽樣的方法抽取7人,組成一個體驗小組去市場體驗“共享單車”的使用.問:

(Ⅰ)應從該興趣小組中抽取高一級和高二級的學生各多少人;

(Ⅱ)已知該地區(qū)有, 兩種型號的“共享單車”,在市場體驗中,該體驗小組的高二級學生都租型車,高一級學生都租型車.

(1)如果從組內(nèi)隨機抽取3人,求抽取的3人中至少有2人在市場體驗過程中租型車的概率;

(2)已知該地區(qū)型車每小時的租金為1元, 型車每小時的租金為1.2元,設為從體驗小組內(nèi)隨機抽取3人得到的每小時租金之和,求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品的進價為每件元,售價為每件元,每個月可賣出件;如果每件商品在該售價的基礎上每上漲元,則每個月少賣件(每件售價不能高于元).設每件商品的售價上漲元(為正整數(shù)),每個月的銷售利潤為元.

(1)求的函數(shù)的函數(shù)關系式并直接寫出自變量的取值范圍;

(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016·雅安高一檢測)已知函數(shù)f(x)=2x的定義域是[0,3],設g(x)=f(2x)-f(x+2),

(1)求g(x)的解析式及定義域;

(2)求函數(shù)g(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=5x+x-2,g(x)=log5x+x-2的零點分別為x1,x2,則x1+x2的值為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域是.

(1)判斷上的單調性,并證明;

(2)若不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,左頂點為.

(1)求橢圓的方程;

(2)已知為坐標原點, 是橢圓上的兩點,連接的直線平行軸于點,證明: 成等比數(shù)列.

查看答案和解析>>

同步練習冊答案