分析 (1)連結(jié)AC,BC,MC,由點(diǎn)C,M的坐標(biāo)求得|CM|=2$\sqrt{2}$.又|CA|=1,由勾股定理求得|AM|.設(shè)∠AMC=θ,求得sin θ=$\frac{1}{2\sqrt{2}}$,利用二倍角的余弦得cos 2θ,代入數(shù)量積公式求得$\overrightarrow{MA}$•$\overrightarrow{MB}$;
(2)設(shè)點(diǎn)M(m,0)(m>0),則|CM|=$\sqrt{{m}^{2}+4}$,求出|AM|.設(shè)AB與CM相交于D,則D為AB的中點(diǎn),且AD⊥CM.由射影定理列式求得m,則點(diǎn)M的坐標(biāo)可求.
解答 解:(1)連結(jié)AC,BC,MC,則AC⊥AM,BC⊥BM,△AMC≌△BMC.
∵點(diǎn)C(0,2),M(2,0),∴|CM|=2$\sqrt{2}$.
又|CA|=1,∴|AM|=$\sqrt{|CM{|}^{2}-|CA{|}^{2}}$=$\sqrt{7}$.
設(shè)∠AMC=θ,則sin θ=$\frac{|CA|}{|CM|}$=$\frac{1}{2\sqrt{2}}$,cos2θ=1-2sin2θ=$\frac{3}{4}$,
∴$\overrightarrow{MA}$•$\overrightarrow{MB}$=|$\overrightarrow{MA}$||$\overrightarrow{MB}$|cos2θ=7×$\frac{3}{4}$=$\frac{21}{4}$;
(2)設(shè)點(diǎn)M(m,0)(m>0),則|CM|=$\sqrt{{m}^{2}+4}$,
|AM|=$\sqrt{|CM{|}^{2}-|CA{|}^{2}}=\sqrt{{m}^{2}+3}$.
設(shè)AB與CM相交于D,則D為AB的中點(diǎn),且AD⊥CM.
∴|CM|×|AD|=|CA|×|AM|,即$\sqrt{{m}^{2}+4}$×$\frac{2\sqrt{2}}{3}$=1×$\sqrt{{m}^{2}+3}$.
則8(m2+4)=9(m2+3),
∴m2=5,得m=$\sqrt{5}$,
∴點(diǎn)M的坐標(biāo)為($\sqrt{5}$,0).
點(diǎn)評(píng) 本題考查直線與圓位置關(guān)系的應(yīng)用,考查平面向量的數(shù)量積運(yùn)算,考查數(shù)形結(jié)合的解題思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16≤ω<20 | B. | 16≤ω≤20 | C. | 16≤ω<18 | D. | 16≤ω≤18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15° | B. | 75° | C. | 15°或75° | D. | 60°或120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36種 | B. | 30種 | C. | 24種 | D. | 6種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com