12.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{2}{1+i}$(i為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離是( 。
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

分析 利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式、幾何意義即可得出.

解答 解:在復(fù)平面內(nèi),復(fù)數(shù)$\frac{2}{1+i}$=$\frac{2(1-i)}{(1+i)(1-i)}$=1-i對(duì)應(yīng)的點(diǎn)(1,-1)與原點(diǎn)的距離=$\sqrt{{1}^{2}+(-1)^{2}}$=$\sqrt{2}$.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列命題中,真命題的個(gè)數(shù)是.( 。
①命題“若p,則q”的否命題是“若p,則¬q”;
②xy≠10是x≠5或y≠2的充分不必要條件;
③已知命題p,q,若“p∧q”為假命題,則命題p與q一真一假;
④線性相關(guān)系數(shù)r的絕對(duì)值越接近1,表示兩個(gè)變量的相關(guān)性越強(qiáng).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.圓$ρ=\sqrt{2}(cosθ+sinθ)$的圓心的極坐標(biāo)是(1,$\frac{π}{4}$);半徑是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}滿足$\frac{a_n}{{{a_n}+2}}=\frac{1}{2}{a_{n+1}}$(n∈N*),a1=1.
(1)證明:數(shù)列$\{\frac{1}{a_n}\}$為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若記bn為滿足不等式${(\frac{1}{2})^n}<{a_k}≤{(\frac{1}{2})^{n-1}}(n∈{N^*})$的正整數(shù)k的個(gè)數(shù),數(shù)列{$\frac{_{n}}{{a}_{n}}$}的前n項(xiàng)和為Sn,求關(guān)于n的不等式Sn<4032的最大正整數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知θ∈{α|α=kπ+(-1)k+1•$\frac{π}{4}$,k∈Z},則角θ的終邊所在的象限是三,四.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等差數(shù)列{an}的公差為2,前n項(xiàng)和為Sn,且S1,S2,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{4}{{({{a_n}+1})({{a_n}+5})}}$,數(shù)列{bn}前n項(xiàng)和為Tn,求證:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,已知⊙C:x2+(y-2)2=1,點(diǎn)M在x軸正半軸上,過點(diǎn)M作⊙C的兩條切線,切點(diǎn)分別為A,B.
(1)若點(diǎn)M的坐標(biāo)為(2,0),求$\overrightarrow{MA}$•$\overrightarrow{MB}$的值;
(2)若|AB|=$\frac{4\sqrt{2}}{3}$,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.直線x-$\sqrt{3}$y+1=0的斜率為( 。
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.己知i是虛數(shù)單位,$\overline z$是z的共軛復(fù)數(shù),$({2-i})\overline z=3-4i$,則z的虛部為( 。
A.1B.-1C.iD.-i

查看答案和解析>>

同步練習(xí)冊(cè)答案