【題目】當(dāng)時(shí),不等式成立,則實(shí)數(shù)k的取值范圍是______________.

【答案】k∈(﹣,1]

【解析】

此題先把常數(shù)k分離出來,再構(gòu)造成再利用導(dǎo)數(shù)求函數(shù)的最小值,使其最小值大于等于k即可.

由題意知:

∵當(dāng)0≤x≤1時(shí)

1)當(dāng)x0時(shí),不等式恒成立 kR

2)當(dāng)0x≤1時(shí),不等式可化為

要使不等式恒成立,則k成立

fx x∈(0,1]

f 'x

再令gx

g'x

∵當(dāng)0x≤1時(shí),g'x)<0

gx)為單調(diào)遞減函數(shù)

gx)<g0)=0

f 'x)<0

即函數(shù)fx)為單調(diào)遞減函數(shù)

所以 fxminf1)=1 k≤1

綜上所述,由(1)(2)得 k≤1

故答案為: k∈(﹣,1]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知函數(shù)在區(qū)間,內(nèi)各有一個(gè)極值點(diǎn).

I)求的最大值;

II)當(dāng)時(shí),設(shè)函數(shù)在點(diǎn)處的切線為,若在點(diǎn)處穿過函數(shù)的圖象(即動(dòng)點(diǎn)在點(diǎn)附近沿曲線運(yùn)動(dòng),經(jīng)過點(diǎn)時(shí),從的一側(cè)進(jìn)入另一側(cè)),求函數(shù)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某單位甲、乙、丙三個(gè)部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時(shí)間的調(diào)查.

I)應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取多少人?

II)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.

i)用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;

ii)設(shè)A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在極坐標(biāo)系中,,,,,弧,所在圓的圓心分別是,,曲線是弧,曲線是線段,曲線是線段,曲線是弧.

(1)分別寫出,,的極坐標(biāo)方程;

(2)曲線,,構(gòu)成,若點(diǎn),(),在上,則當(dāng)時(shí),求點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某種細(xì)菌的繁殖個(gè)數(shù)y隨天數(shù)x的變化情況,收集數(shù)據(jù)如下:

天數(shù)x

1

2

3

4

5

6

繁殖個(gè)數(shù)y

6

12

25

49

95

190

1)根據(jù)散點(diǎn)圖,判斷哪一個(gè)適合作為y關(guān)于x的回歸方程類型;(給出判斷即可,不用說明理由)

2)根據(jù)(1)中的判斷及表中數(shù)據(jù),求y關(guān)于x的回歸方程參考數(shù)據(jù):,,,

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新冠狀病毒嚴(yán)重威脅著人們的身體健康,我國某醫(yī)療機(jī)構(gòu)為了調(diào)查新冠狀病毒對(duì)我國公民的感染程度,選了某小區(qū)的位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:

感染

不感染

合計(jì)

年齡不大于

年齡大于

合計(jì)

1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

2)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為感染新冠狀病與不同年齡有關(guān)?

3)已知在被調(diào)查的年齡大于歲的感染者中有名女性,其中位是女教師,現(xiàn)從這名女性中隨機(jī)抽取人,求至多有位教師的概率.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓周上有七個(gè)不同的點(diǎn),以其中任意一點(diǎn)為始點(diǎn),另一點(diǎn)為終點(diǎn)作向量,作出所有的向量(對(duì)于點(diǎn)、,若作出向量,則不再作向量).若其中某四點(diǎn)所確定的凸四邊形的四條邊是首尾相接的四個(gè)向量,則稱其為“零四邊形”.試求以這七個(gè)點(diǎn)中四個(gè)點(diǎn)為頂點(diǎn)的凸四邊形中,零四邊形個(gè)數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究教學(xué)方式對(duì)教學(xué)質(zhì)量的影響,某高中數(shù)學(xué)老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī)

(1)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀.請(qǐng)畫出下面的列聯(lián)表

甲班

乙班

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

(2)判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.

下面臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左頂點(diǎn)為,過橢圓的右焦點(diǎn)作互相垂直的兩條直線分別交直線兩點(diǎn),交橢圓于另一點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)求證:直線恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案