【題目】已知某單位甲、乙、丙三個(gè)部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時(shí)間的調(diào)查.
(I)應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取多少人?
(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.
(i)用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;
(ii)設(shè)A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.
【答案】(Ⅰ)從甲、乙、丙三個(gè)部門的員工中分別抽取3人,2人,2人.(Ⅱ)(i)答案見解析;(ii).
【解析】分析:(Ⅰ)由分層抽樣的概念可知應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取3人,2人,2人.
(Ⅱ)(i)隨機(jī)變量X的所有可能取值為0,1,2,3.且分布列為超幾何分布,即P(X=k)=(k=0,1,2,3).據(jù)此求解分布列即可,計(jì)算相應(yīng)的數(shù)學(xué)期望為.
(ii)由題意結(jié)合題意和互斥事件概率公式可得事件A發(fā)生的概率為.
詳解:(Ⅰ)由已知,甲、乙、丙三個(gè)部門的員工人數(shù)之比為3∶2∶2,
由于采用分層抽樣的方法從中抽取7人,
因此應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取3人,2人,2人.
(Ⅱ)(i)隨機(jī)變量X的所有可能取值為0,1,2,3.
P(X=k)=(k=0,1,2,3).
所以,隨機(jī)變量X的分布列為
X | 0 | 1 | 2 | 3 |
P |
隨機(jī)變量X的數(shù)學(xué)期望.
(ii)設(shè)事件B為“抽取的3人中,睡眠充足的員工有1人,睡眠不足的員工有2人”;
事件C為“抽取的3人中,睡眠充足的員工有2人,睡眠不足的員工有1人”,
則A=B∪C,且B與C互斥,
由(i)知,P(B)=P(X=2),P(C)=P(X=1),
故P(A)=P(B∪C)=P(X=2)+P(X=1)= .
所以,事件A發(fā)生的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某地區(qū)70歲以上老人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣的方法從該地區(qū)調(diào)查了100位70歲以上老人,結(jié)果如下:
男 | 女 | |
需要 | 18 | 5 |
不需要 | 32 | 45 |
(1)估計(jì)該地區(qū)70歲以上老人中,男、女需要志愿者提供幫助的比例各是多少?
(2)能否有的把握認(rèn)為該地區(qū)70歲以上的老人是否需要志愿者提供幫助與性別有關(guān);
(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計(jì)該地區(qū)70歲以上老人中,需要志愿者提供幫助的老人的比例?說明理由.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著工業(yè)化以及城市車輛的增加,城市的空氣污染越來越嚴(yán)重,空氣質(zhì)量指數(shù)一直居高不下,對(duì)人體的呼吸系統(tǒng)造成了嚴(yán)重的影響.現(xiàn)調(diào)查了某市名居民的工作場(chǎng)所和呼吸系統(tǒng)健康,得到列聯(lián)表如下:
室外工作 | 室內(nèi)工作 | 合計(jì) | |
有呼吸系統(tǒng)疾病 | |||
無呼吸系統(tǒng)疾病 | |||
合計(jì) |
(Ⅰ)補(bǔ)全列聯(lián)表;
(Ⅱ)你是否有的把握認(rèn)為感染呼吸系統(tǒng)疾病與工作場(chǎng)所有關(guān);
(Ⅲ)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中隨機(jī)的抽取兩人,求兩人都有呼吸系統(tǒng)疾病的概率.
臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從8名運(yùn)動(dòng)員中選4人參加4×100米接力賽,在下列條件下,各有多少種不同的排法?(用數(shù)字結(jié)尾)
(1)甲、乙兩人必須跑中間兩棒;
(2)若甲、乙兩人只有一人被選且不能跑中間兩棒;
(3)若甲、乙兩人都被選且必須跑相鄰兩棒.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右焦點(diǎn)且斜率存在的直線交橢圓于兩點(diǎn),線段的垂直平分線交軸于點(diǎn),證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:的左、右焦點(diǎn)分別為,軸,直線交軸于點(diǎn),,為橢圓上的動(dòng)點(diǎn),的面積的最大值為1.
(1)求橢圓的方程;
(2)過點(diǎn)作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對(duì)角線的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在貫徹中共中央國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位定點(diǎn)幫扶甲、乙兩個(gè)村各50戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對(duì)這100戶村民的年收入情況、勞動(dòng)能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo)和,制成下圖,其中“”表示甲村貧困戶,“”表示乙村貧困戶.
若,則認(rèn)定該戶為“絕對(duì)貧困戶”,若,則認(rèn)定該戶為“相對(duì)貧困戶”,若,則認(rèn)定該戶為“低收入戶”;
若,則認(rèn)定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.
(1)從甲村50戶中隨機(jī)選出一戶,求該戶為“今年不能脫貧的絕對(duì)貧困戶”的概率;
(2)若從所有“今年不能脫貧的非絕對(duì)貧困戶”中選3戶,用表示所選3戶中乙村的戶數(shù),求的分布列和數(shù)學(xué)期望;
(3)試比較這100戶中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com