A. | $(2-\sqrt{3},2+\sqrt{3})$ | B. | $[2-\sqrt{3},2+\sqrt{3}]$ | C. | $(-∞,2-\sqrt{3})∪(2+\sqrt{3},+∞)$ | D. | $(-∞,2-\sqrt{3}]∪[2+\sqrt{3},+∞)$ |
分析 求出圓的圓心與半徑,利用圓心到直線的距離與半徑的關(guān)系列出不等式求解即可.
解答 解:圓x2+y2-4x-4y-10=0整理為${(x-2)^2}+{(y-2)^2}={(3\sqrt{2})^2}$,
∴圓心坐標(biāo)為(2,2),半徑為3$\sqrt{2}$,要求圓上至少有三個不同的點到直線l:y=kx的距離為$2\sqrt{2}$,則圓心到直線的距離應(yīng)不大于等于$\sqrt{2}$,∴$\frac{|2-2k|}{{\sqrt{1+{k^2}}}}≤\sqrt{2}$,∴$2-\sqrt{3}≤k≤2+\sqrt{3}$,
故選:B.
點評 本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查計算能力以及轉(zhuǎn)化思想的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{20}$ | B. | $\frac{1}{20}$ | C. | $\frac{5}{8}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{7}{2}$ | B. | $\frac{7}{2}$ | C. | $-\frac{7}{2}i$ | D. | $\frac{7}{2}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “p∨q為真”是“p∧q為真”的充分不必要條件 | |
B. | 若a,b∈[0,1],則不等式a2+b2<$\frac{1}{4}$成立的概率是$\frac{1}{4}$ | |
C. | 已知隨機變量X~N(2,σ2),且P(X≤4)=0.84,則P(X≤0)=0.16 | |
D. | 已知空間直線a,b,c,若a⊥b,b⊥c,則a∥c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 2 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com