分析 先利用函數(shù)的奇偶性的定義判斷出函數(shù)的奇偶性,再由導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性,利用奇偶性將不等式進(jìn)行轉(zhuǎn)化,再利用單調(diào)性去掉不等式中的符號(hào)“f”,轉(zhuǎn)化具體不等式,借助一次函數(shù)的性質(zhì)可得x的不等式組,解出可得答案.
解答 解:由題意得,函數(shù)的定義域是R,
且f(-x)=(-x)3+3(-x)=-(x3+3x)=-f(x),
所以f(x)是奇函數(shù),
又f'(x)=3x2+3>0,所以f(x)在R上單調(diào)遞增,
所以f(mx-2)+f(x)<0可化為:f(mx-2)<-f(x)=f(-x),
由f(x)遞增知:mx-2<-x,即mx+x-2<0,
則對(duì)任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,
等價(jià)于對(duì)任意的m∈[-2,2],mx+x-2<0恒成立,
所以 $\left\{\begin{array}{l}{-2x+x-2<0}\\{2x+x-2<0}\end{array}\right.$,解得-2<x<$\frac{2}{3}$,
即x的取值范圍是(-2,$\frac{2}{3}$),
故答案為:(-2,$\frac{2}{3}$).
點(diǎn)評(píng) 本題考查恒成立問(wèn)題,函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,考查轉(zhuǎn)化思想,以及學(xué)生靈活運(yùn)用知識(shí)解決問(wèn)題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0}⊆M | B. | M=∅ | C. | -1∈M | D. | 2∈M |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 20 | C. | 2$\sqrt{41}$ | D. | 4$\sqrt{41}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 橫坐標(biāo)向左平動(dòng)$\frac{π}{4}$個(gè)單位長(zhǎng)度 | B. | 橫坐標(biāo)向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度 | ||
C. | 橫坐標(biāo)向左平移$\frac{π}{8}$個(gè)單位長(zhǎng)度 | D. | 橫坐標(biāo)向右平移$\frac{π}{8}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=9x+8 | B. | f(x)=3x+2 | ||
C. | f(x)=-3x-4 | D. | f(x)=3x+2或f(x)=-3x-4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com