1.若函數(shù)f(x)滿足f(3x+2)=9x+8,則f(x)的解析式是(  )
A.f(x)=9x+8B.f(x)=3x+2
C.f(x)=-3x-4D.f(x)=3x+2或f(x)=-3x-4

分析 令3x+2=t,得到x=$\frac{t-2}{3}$,求出f(x)的解析式即可.

解答 解:令3x+2=t,則x=$\frac{t-2}{3}$,
故f(t)=3(t-2)+8=3t+2,
故f(x)=3x+2,
故選:B.

點(diǎn)評 本題考查了求函數(shù)的解析式問題,考查換元思想,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知命題p:?x0∈R,lnx0≥x0-1.命題q:?θ∈R,sinθ+cosθ>-1.則下列命題中為真命題的是( 。
A.p∧(?q)B.(?p)∨qC.(?p)∧(?q)D.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=x3+3x對任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,則x∈(-2,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知0<α<$\frac{π}{2}$,cos(2π-α)-sin(π-α)=-$\frac{\sqrt{5}}{5}$
(1)求sinα+cosα的值;
(2)求$\frac{{{{cos}^2}(\frac{3π}{2}+α)+2cosαcos(\frac{π}{2}-α)}}{{1+{{sin}^2}(\frac{π}{2}-α)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=log3($\sqrt{{x}^{2}+1}$-x)+(a+3)x+19,f(10)=8,則f(-10)的值為( 。
A.10B.19C.20D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知冪函數(shù)f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈N*)的圖象不與x軸、y軸相交,且關(guān)于原點(diǎn)對稱,則m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈(0,+∞),3x-cosx>0,則下列敘述正確的是(  )
A.¬p:?x∈(0,+∞),3x-cosx≤0B.¬p:?x∈(0,+∞),3x-cosx<0
C.¬p:?x∈(-∞,0],3x-cosx≤0D.¬p是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知冪函數(shù)f(x)=x${\;}^{-{m}^{2}+2m+3}$(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=$\sqrt{f(x)}$+2x+c,若g(x)>2對任意的x∈R恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.甲乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是$\frac{4}{5}$,乙能答對其中的8道題.規(guī)定每次考試都從備選的10道題中隨機(jī)抽出4道題進(jìn)行測試,只有選中的4個題目均答對才能入選;
(Ⅰ) 求甲恰有2個題目答對的概率;
(Ⅱ) 求乙答對的題目數(shù)X的分布列;
(Ⅲ) 試比較甲,乙兩人平均答對的題目數(shù)的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案