已知圓軸于兩點,曲線是以為長軸,直線:為準線的橢圓.

(1)求橢圓的標準方程;

(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標;

(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.

 

【答案】

(1)(2)(3)

【解析】

試題分析:解:(Ⅰ)設橢圓的標準方程為,則:

,從而:,故,所以橢圓的標準方程為。  4分

(Ⅱ)設,則圓方程為 

與圓聯(lián)立消去的方程為,

過定點。                              …………8分 

(Ⅲ)解法一:設,則,………①

,,即:

代入①解得:(舍去正值),      ,所以,

從而圓心到直線的距離,從而, 16分

考點:橢圓的方程

點評:解決直線與圓錐曲線的位置關(guān)系的時候,一般采用聯(lián)立方程組的思想來得到,屬于基礎(chǔ)題。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本小題滿分16分)已知圓軸于兩點,曲線是以為長軸,直線:為準線的橢圓.(1)求橢圓的標準方程;(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標;(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓軸于兩點,曲線是以為長軸,直線:為準線的橢圓.

(1)求橢圓的標準方程;

(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標;

(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

已知圓軸于兩點,曲線是以為長軸,直線為準線的橢圓.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若是直線上的任意一點,以為直徑的

與圓相交于兩點,求證:直線

必過定點,并求出點的坐標;

(Ⅲ)如圖所示,若直線與橢圓交于兩點,

,試求此時弦的長。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分16分)已知圓軸于兩點,曲線是以為長軸,直線:為準線的橢圓.(1)求橢圓的標準方程;

(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標;

(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.

查看答案和解析>>

同步練習冊答案