分析 由數(shù)列遞推式可知數(shù)列{$\frac{1}{a_n}$}是以$\frac{1}{{a}_{1}}$為首項,以1為公差的等差數(shù)列,由此求得數(shù)列{an}的通項公式,則答案可求.
解答 解:由$\frac{1}{{{a_{n+1}}}}$=$\frac{1}{a_n}$+1(n∈N*),得
$\frac{1}{{{a_{n+1}}}}$-$\frac{1}{a_n}$=1(n∈N*),
因為a1=1,
所以$\frac{1}{{a}_{1}}$=1,
所以數(shù)列{$\frac{1}{a_n}$}是以$\frac{1}{{a}_{1}}$為首項,以1為公差的等差數(shù)列,
所以$\frac{1}{a_n}$=1+(n-1)×1=n,
所以an=$\frac{1}{n}$.
故答案是:$\frac{1}{n}$.
點評 本題考查了等差關系的確定,考查了等差數(shù)列的通項公式,是基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{1}{2}i$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“$?{x_0}∈R,{x_0}^2+1>3{x_0}$”的否定是“$?{x_0}∈R,{x^2}+1>3x$” | |
B. | “函數(shù)f(x)=cosax-sinax的最小正周期為 π”是“a=2”的必要不充分條件 | |
C. | x2+2x≥ax在x∈[1,2]時有解?(x2+2x)min≥(ax)min在x∈[1,2]時成立 | |
D. | “平面向量$\overrightarrow a$與$\overrightarrow b$的夾角是鈍角”的充分必要條件是“$\overrightarrow a$•$\overrightarrow b$<0” |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com