6.若正數(shù)x,y滿足$\frac{3}{x}+\frac{1}{y}=1$,則3x+4y的最小值是( 。
A.24B.28C.30D.25

分析 將3x+4y乘以1,利用已知等式代換,展開,利用基本不等式求最小值.

解答 解:正數(shù)x,y滿足$\frac{3}{x}+\frac{1}{y}=1$,則(3x+4y)($\frac{3}{x}+\frac{1}{y}$)=13+$\frac{12y}{x}+\frac{3x}{y}$
≥13+2$\sqrt{\frac{12y}{x}•\frac{3x}{y}}$=25,當(dāng)且僅當(dāng)$\frac{12y}{x}=\frac{3x}{y}$時(shí)等號(hào)成立,所以3x+4y的最小值是25;
故選D.

點(diǎn)評 本題考查了利用基本不等式求最值;關(guān)鍵是1的活用,變形代數(shù)式為基本不等式的形式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知O是△ABC外接圓的圓心,若4$\overline{OA}$+5$\overrightarrow{OB}$+6$\overline{OC}$=$\overrightarrow{0}$,則cosC=$\frac{\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.等比數(shù)列{an}的前n項(xiàng)和為Sn,若S14=3S7=3,則S28=( 。
A.9B.15C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,直線l的方程是y=8,圓C的參數(shù)方程是$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線l和圓C的極坐標(biāo)方程;
(2)射線OM:θ=α(其中0<α<$\frac{π}{2}$)與圓C交于O,P兩點(diǎn),與直線l交于點(diǎn)M,射線ON:θ=α-$\frac{π}{2}$與圓C交于O,Q兩點(diǎn),與直線l交于點(diǎn)N,求$\frac{|OP|}{|OM|}$•$\frac{|OQ|}{|ON|}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在國家批復(fù)成立江北新區(qū)后,南京市政府規(guī)劃在新區(qū)內(nèi)的一條形地塊上新建一個(gè)全民健身中心,規(guī)劃區(qū)域?yàn)樗倪呅蜛BCD,如圖OP∥AQ,OA⊥AQ,點(diǎn)B在線段OA上,點(diǎn)C、D分別在射線OP與AQ上,且A和C關(guān)于BD對稱.已知OA=2,
(1)若OC=1,求BD的長;
(2)問點(diǎn)C在何處時(shí),規(guī)劃區(qū)域的面積最?最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小正周期為2π,最小值為-2,且當(dāng)x=$\frac{5π}{6}$時(shí),函數(shù)取得最大值4.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若當(dāng)x∈[$\frac{π}{6}$,$\frac{7π}{6}$]時(shí),方程f(x)=m+1有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.四面體ABCD四個(gè)面重心分別為E、F、G、H,則四面體EFGH表面積與四面體ABCD表面積的比值為1:9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為e=$\frac{1}{2}$,過點(diǎn)($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)
(I)求橢圓C的方程;
(II)過A(-a,0)且互相垂直的兩條直線l1、l2與橢圓C的另一個(gè)交點(diǎn)分別為P、Q.問:直線PQ是否經(jīng)過定點(diǎn)?若是,求出該定點(diǎn);否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=xsinx+cosx的導(dǎo)數(shù)為y′=xcosx.

查看答案和解析>>

同步練習(xí)冊答案