【題目】設(shè)命題q:對任意實數(shù)x,不等式x2﹣2x+m≥0恒成立;命題q:方程 表示焦點(diǎn)在x軸上的雙曲線.
(1)若命題q為真命題,求實數(shù)m的取值范圍;
(2)若命題:“p∨q”為真命題,且“p∧q”為假命題,求實數(shù)m的取值范圍.
【答案】
(1)解:∵方程 表示焦點(diǎn)在x軸上的雙曲線.
∴ ,得m>3;
∴當(dāng)m>3時,q為真命題.
(2)解:∵不等式x2﹣2x+m≥0恒成立∴△=4﹣4m≤0,
∴m≥1,∴當(dāng)m≥1時,p為真命題.
∵p∧q為假命題,p∨q為真命題,∴p,q一真一假;
①當(dāng)p真q假 .
②當(dāng)p假q真 ,無解.
綜上,m的取值范圍是[1,3].
【解析】(1)由方程 表示焦點(diǎn)在x軸上的雙曲線.可得 ,得m范圍.(2)由不等式x2﹣2x+m≥0恒成立,可得△≤0,由p∧q為假命題,p∨q為真命題,可得p,q一真一假.
【考點(diǎn)精析】本題主要考查了復(fù)合命題的真假的相關(guān)知識點(diǎn),需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個命題: ①若直線a,b異面,b,c異面,則a,c異面;
②若直線a,b相交,b,c相交,則a,c相交;
③若a∥b,則a,b與c所成的角相等;
④若a⊥b,b⊥c,則a∥c.
其中真命題的個數(shù)為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)y=g(x)的圖象經(jīng)過點(diǎn)(2,4),且定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求f(x)的解析式,判斷f(x)在定義域R上的單調(diào)性,并給予證明;
(2)若關(guān)于x的方程f(x)=m在[﹣1,0)上有解,求f( )的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列選項中,表示同一集合的是( )
A.A={0,1},B={(0,1)}
B.A={2,3},B={3,2}
C.A={x|﹣1<x≤1,x∈N},B={1}
D.
E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px上一點(diǎn) 到焦點(diǎn)F距離為1,
(1)求拋物線C的方程;
(2)直線l過點(diǎn)(0,2)與拋物線交于M,N兩點(diǎn),若OM⊥ON,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光線l1從點(diǎn)M(﹣1,3)射到x軸上,在點(diǎn)P(1,0)處被x軸反射,得到光線l2 , 再經(jīng)直線x+y﹣4=0反射,得到光線l3 , 求l2和l3的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“a<﹣2”是“函數(shù)f(x)=ax+3在區(qū)間[﹣1,2]上存在零點(diǎn)x0”的( )
A.充分非必要條件
B.必要非充分條件
C.充分必要條件
D.既非充分也非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)x、y滿足 ,目標(biāo)函數(shù)z=x+ay.
(1)當(dāng)a=﹣2時,求目標(biāo)函數(shù)z的取值范圍;
(2)若使目標(biāo)函數(shù)取得最小值的最優(yōu)解有無數(shù)個,求 的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com