【題目】下面四個命題: ①若直線a,b異面,b,c異面,則a,c異面;
②若直線a,b相交,b,c相交,則a,c相交;
③若a∥b,則a,b與c所成的角相等;
④若a⊥b,b⊥c,則a∥c.
其中真命題的個數(shù)為(
A.4
B.3
C.2
D.1

【答案】D
【解析】解:①在長方體ABCD﹣A1B1C1D1中, i若直線AA1記為直線a,直線BC記為直線b,直線B1A1記為直線c,
則滿足a和b是異面直線,b和c是異面直線,
而a和c相交;
ii若直線AA1記為直線a,直線BC記為直線b,直線DD1記為直線c,
此時a和c平行;
iii若直線AA1記為直線a,直線BC記為直線b,直線C1D1記為直線c,
此時a和c異面.
故若直線a,b異面,b,c異面,則a,c相交、平行或異面,故①錯誤;
②若直線a,b相交,b,c相交,則a,c相交、平行或異面,故②錯誤;
③若a∥b,則由異面直線所成的角的定義知a,b與c所成的角相等,故③正確;
④若a⊥b,b⊥c,則a與c相交、平行或異面,故④錯誤.
故選D.

①若直線a,b異面,b,c異面,則a,c相交、平行或異面;②若直線a,b相交,b,c相交,則a,c相交、平行或異面;③由異面直線所成的角的定義知③正確;④若a⊥b,b⊥c,則a與c相交、平行或異面.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若的一條切線,求的值;

3)已知為整數(shù),若對任意,都有恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在直角坐標中,以為極點, 軸正半軸為極軸建立極坐標系,曲線的參數(shù)方程為: ,曲線的極坐標方程:

1)寫出的普通方程;

2)若交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A,B兩地的距離是120km,按交通法規(guī)規(guī)定,A,B兩地之間的公路車速應限制在50~100km/h,假設汽油的價格是6元/升,以xkm/h速度行駛時,汽車的耗油率為 ,司機每小時的工資是36元,那么最經(jīng)濟的車速是多少?如果不考慮其他費用,這次行車的總費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若圓的一條直徑的兩個端點分別是(﹣1,3)和(5,﹣5),則此圓的方程是(
A.x2+y2+4x+2y﹣20=0
B.x2+y2﹣4x﹣2y﹣20=0
C.x2+y2﹣4x+2y+20=0
D.x2+y2﹣4x+2y﹣20=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù),恒有成立,且,對任意的,則成立的充要條件是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若有三個極值點,求的取值范圍;

(2)若對任意都恒成立的的最大值為,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4;坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點, 軸正半軸為極軸的極坐標中,曲線

(Ⅰ)求直線的普通方程和曲線的直角坐標方程.

(Ⅱ)求曲線上的點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.

查看答案和解析>>

同步練習冊答案