【題目】已知函數(shù),其中為常數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若是的一條切線,求的值;
(3)已知為整數(shù),若對(duì)任意,都有恒成立,求的最大值.
【答案】(1)若時(shí),在上單調(diào)遞增;若時(shí), 在上遞減,在上遞增;(2);(3).
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)設(shè)切點(diǎn),利用導(dǎo)數(shù)的幾何意義為直線斜率建立方程,從而求出a的值即可;
(3)分離參數(shù)k,構(gòu)造函數(shù)利用導(dǎo)數(shù)分析其增減性,求出其最小值,問(wèn)題轉(zhuǎn)化為只需即可.
試題解析:(1)函數(shù)的定義域?yàn)?/span>.
若時(shí),則,所以在上單調(diào)遞增;
若時(shí),則當(dāng)時(shí), ,當(dāng)時(shí), ,
所以在上遞減,在上遞增.
(2)設(shè)切點(diǎn)為則:
,解得.
(3)當(dāng)時(shí),對(duì)任意,都有恒成立等價(jià)于對(duì)恒成立.
令,則,
由(1)知,當(dāng)時(shí), 在上遞增.
因?yàn)?/span>,所以在上存在唯一零點(diǎn),
所以在上也存在唯一零點(diǎn),設(shè)此零點(diǎn)為,則.
因?yàn)楫?dāng)時(shí), ,當(dāng)時(shí), ,
所以在上的最小值為,所以
又因?yàn)?/span>,所以,所以.
又因?yàn)?/span>為整數(shù)且,所以的最大值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均為整數(shù)的數(shù)列滿足,,前6項(xiàng)依次成等差數(shù)列, 從第5項(xiàng)起依次成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求出所有的正整數(shù)m ,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí),求的最大值;
(2)當(dāng)時(shí),恒成立,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處有極值10.
(1)求實(shí)數(shù)的值;
(2)設(shè),討論函數(shù)在區(qū)間上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且滿足:.
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)函數(shù)中,在(0,1)上為增函數(shù)的是( )
A.y=﹣log2x
B.y=sinx
C.
D.y=arccosx
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的最高點(diǎn)D的坐標(biāo)( ,2),由D點(diǎn)運(yùn)動(dòng)到相鄰最低點(diǎn)時(shí)函數(shù)曲線與x軸的交點(diǎn)( ,0)
(1)求f(x)的解析式
(2)求f(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在區(qū)間[ ,2]上,函數(shù)f(x)=x2+px+q與g(x)=2x+ 在同一點(diǎn)取得相同的最小值,那么f(x)在[ ,2]上的最大值是( )
A.
B.
C.8
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面四個(gè)命題: ①若直線a,b異面,b,c異面,則a,c異面;
②若直線a,b相交,b,c相交,則a,c相交;
③若a∥b,則a,b與c所成的角相等;
④若a⊥b,b⊥c,則a∥c.
其中真命題的個(gè)數(shù)為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com