分析 (1)利用等比數(shù)列的通項(xiàng)公式即可得出;
(2)利用對(duì)數(shù)的運(yùn)算性質(zhì)、“裂項(xiàng)求和”方法即可得出.
解答 解:(1)設(shè)an公比為q,因?yàn)閧an}的各項(xiàng)均為正數(shù),則q>0,
$\left\{\begin{array}{l}{a_2}-{a_1}={a_1}q-{a_1}=6\\ 9a_3^2={a_2}{a_6}⇒9a_1^2{q^4}={a_1}q•{a_1}{q^5}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a_1}=3\\ q=3\end{array}\right.$,
∴${a_n}={a_1}{q^{n-1}}={3^n}$.
(2)${b_n}={log_3}{a_1}+{log_3}{a_2}+…+{log_3}{a_n}=1+2+…+n=\frac{n(n+1)}{2}$,
∴$\frac{1}{b_n}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$,
∴${T_n}=2(1-\frac{1}{2})+2(\frac{1}{2}-\frac{1}{3})+…2(\frac{1}{n}-\frac{1}{n+1})=2(1-\frac{1}{n+1})<2$.
點(diǎn)評(píng) 本題考查了等比數(shù)列與等差數(shù)列的通項(xiàng)公式及其求和公式、“裂項(xiàng)求和”方法、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 增函數(shù) | B. | 減函數(shù) | ||
C. | 先是增函數(shù)后是減函數(shù) | D. | 先是減函數(shù)后是函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
價(jià)格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com