現(xiàn)有6道題,其中4道甲類題,2道乙類題,張同學從中任取2道題解答.試求:
(1)所取的2道題都是甲類題的概率;
(2)所取的2道題不是同一類題的概率.

(1)    (2)

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

吸煙的危害很多,吸煙產(chǎn)生的煙霧中有近2000種有害物質(zhì),如尼古丁、氰氫酸、氨、一氧化碳、二氧化碳、吡啶、砷、銅、鉛等,還有40多種致癌物,如苯并芘、朕苯胺及煤焦油等。它們隨吸煙者吞咽煙霧時進入體內(nèi),對機體產(chǎn)生危害。為了解某市心肺疾病是否與吸煙有關(guān),某醫(yī)院隨機對入院的50人進行了問卷調(diào)查,得到了如下的列聯(lián)表.

 
 
患心肺疾病
 
不患心肺疾病
 
合計
 
吸煙患者
 
20
 
5
 
25
 
不吸煙患者
 
10
 
15
 
25
 
合計
 
30
 
20
 
50
 
 
(1)用分層抽樣的方法在患心肺疾病的人群中抽3人,其中吸煙患者抽到多少人?
(2)在上述抽取的3人中選2人,求恰有一名不吸煙患者的概率;
(3)是否有99.5%的把握認為患心肺疾病與吸煙有關(guān)?
附:

 
0.15
 
0.10
 
0.05
 
0.025
 
0.010
 
0.005
 
0.001
 

 
2.072
 
2.706
 
3.841
 
5.024
 
6.635
 
7.879
 
10.828
 
 
參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個袋中裝有8個大小質(zhì)地相同的球,其中4個紅球、4個白球,現(xiàn)從中任意取出四個球,設(shè)為取得紅球的個數(shù).
(1)求的分布列;
(2)若摸出4個都是紅球記5分,摸出3個紅球記4分,否則記2分.求得分的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某射手進行射擊訓練,假設(shè)每次射擊擊中目標的概率為,且每次射擊的結(jié)果互不影響,已知射手射擊了5
次,求:
(1)其中只在第一、三、五次擊中目標的概率;
(2)其中恰有3次擊中目標的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

假設(shè)某班級教室共有4扇窗戶,在每天上午第三節(jié)課上課預(yù)備鈴聲響起時,每扇窗戶或被敞開或被關(guān)閉,且概率均為0.5.記此時教室里敞開的窗戶個數(shù)為X.
(1)求X的分布列;
(2)若此時教室里有兩扇或兩扇以上的窗戶被關(guān)閉,班長就會將關(guān)閉的窗戶全部敞開,否則維持原狀不變.記每天上午第三節(jié)課上課時該教室里敞開的窗戶個數(shù)為Y,求Y的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n
14
15
16
17
18
19
20
頻數(shù)
10
20
16
16
15
13
10
 
①假設(shè)花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
②若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如下表所示:

 
文藝節(jié)目
新聞節(jié)目
總計
20至40歲
40
18
58
大于40歲
15
27
42
總計
55
45
100
 
(1)由表中數(shù)據(jù)直觀分析,收看新聞節(jié)目的觀眾是否與年齡有關(guān)?
(2)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機抽取5名,大于40歲的觀眾應(yīng)該抽取幾名?
(3)在上述抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為20至40歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分9分)一個袋子中有3個紅球和2個黃球,5個球除顏色外完全相同,甲、乙兩人先后不放回地從中各取1個球.規(guī)定:若兩人取得的球的顏色相同則甲獲勝,否則乙獲勝.
(1) 求兩個人都取到黃球的概率;
(2) 計算甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知復(fù)數(shù)z=x+yi(x,y∈R)在復(fù)平面上對應(yīng)的點為M.
(1)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機取一個數(shù)作為x,從集合Q中隨機取一個數(shù)作為y,求復(fù)數(shù)z為純虛數(shù)的概率;
(2)設(shè)x∈[0,3],y∈[0,4],求點M落在不等式組:所表示的平面區(qū)域內(nèi)的概率.

查看答案和解析>>

同步練習冊答案