等差數(shù)列的首項(xiàng)為23,公差為整數(shù),且第6項(xiàng)為正數(shù),從第7項(xiàng)起為負(fù)數(shù)。
(1)求此數(shù)列的公差d;
(2)當(dāng)前n項(xiàng)和是正數(shù)時(shí),求n的最大值。

(1)-4;      (2)12.

解析試題分析:(1)要熟知通項(xiàng)公式,由第6項(xiàng)為正數(shù),從第7項(xiàng)起為負(fù)數(shù)確定d的范圍,再由是整數(shù)確定其值;(2)運(yùn)用求和公式求得,且是正數(shù),解得n,注意取整數(shù).
試題解析:(1)為整數(shù),
(2)的最大值為12.
考點(diǎn):等差數(shù)列的通項(xiàng)與求和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,其中為數(shù)列的前項(xiàng)和,并且,.
(1)設(shè)),求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列),求證:數(shù)列是等差數(shù)列;
(3)求數(shù)列的通項(xiàng)公式和前項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且,數(shù)列中,,點(diǎn)在直線上.
(1)求數(shù)列的通項(xiàng)
(2) 設(shè),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,.(1)若,求;(2)若數(shù)列為等差數(shù)列,且,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,對一切,點(diǎn)都在函數(shù)的圖象上
(1)求歸納數(shù)列的通項(xiàng)公式(不必證明);
(2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(),,,,,,;,…..,
分別計(jì)算各個(gè)括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,
的值;
(3)設(shè)為數(shù)列的前項(xiàng)積,若不等式對一切都成立,其中,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等比數(shù)列中,
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)在數(shù)列中,,
(1)設(shè).證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足.若為等比數(shù)列,且
(1)求;
(2)設(shè)。記數(shù)列的前項(xiàng)和為.
(i)求;
(ii)求正整數(shù),使得對任意,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足奇數(shù)項(xiàng)成等差數(shù)列,而偶數(shù)項(xiàng)成等比數(shù)列,且,成等差數(shù)列,數(shù)列的前項(xiàng)和為
(1)求通項(xiàng);
(2)求

查看答案和解析>>

同步練習(xí)冊答案