3.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函數(shù).
(Ⅰ)求a、b的值;
(Ⅱ)解關(guān)于t的不等式f(t2-2t)+f(2t2-1)<0.

分析 (Ⅰ)利用f(0)=0,f(-1)=-f(1),即可求a、b的值;
(Ⅱ)利用(x)在(-∞,+∞)上為減函數(shù),f(x)是奇函數(shù),即可解關(guān)于t的不等式f(t2-2t)+f(2t2-1)<0.

解答 解:(Ⅰ)因?yàn)閒(x)是奇函數(shù),所以f(0)=0,解得b=1,
所以$f(x)=\frac{{1-{2^x}}}{{{2^{x+1}}+a}}$.
又由f(1)=-f(-1),解得a=2,
(Ⅱ)由(Ⅰ)知f(x)在(-∞,+∞)上為減函數(shù),
又因f(x)是奇函數(shù),從而不等式f(t2-2t)+f(2t2-1)<0等價(jià)于f(t2-2t)<-f(2t21)=f(-2t2+1).
因f(x)是減函數(shù),由上式推得t2-2t>-2t2+1,
即3t2-2t-1>0解不等式可得t>1或$t<-\frac{1}{3}$,
故不等式的解集為:$\left\{{t\left|{t>1或t<-\frac{1}{3}}\right.}\right\}$.

點(diǎn)評 本題考查函數(shù)的奇偶性、單調(diào)性,考查學(xué)生解不等式的能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)=$\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,[x]表示不超過x的最大整數(shù),則函數(shù)y=[f(x)]的值域?yàn)椋ā 。?table class="qanwser">A.{0}B.{-1,0}C.{-1,0,1}D.{-2,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{sin\frac{5πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,則$f[{f({3\sqrt{3}})}]$=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,在△ABC中,∠ABC=90°,$AB=\sqrt{3}$,BC=1,P為△ABC內(nèi)一點(diǎn),∠BPC=90°,∠APB=120°,則tan∠PBA=$\frac{\sqrt{3}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,D為線段BC上一點(diǎn)(不能與端點(diǎn)重合),∠ACB=$\frac{π}{3},AB=\sqrt{7}$,AC=3,BD=1,則AD=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)已知復(fù)數(shù)z滿足|z|=$\sqrt{2}$,z2的虛部為2,求復(fù)數(shù)z;
(2)求函數(shù)f(x)=ex、直線x=2及兩坐標(biāo)軸圍成的圖形繞x軸旋轉(zhuǎn)一周所得幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)$\overrightarrow a$=(2,1),$\overrightarrow b$=(1,3),求$\overrightarrow a•\overrightarrow b$,$|{\overrightarrow a}|$及$\overrightarrow a$與$\overrightarrow b$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知|x-2|+|x+1|>a恒成立,則實(shí)數(shù)a的取值范圍是(-∞,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f'(x)是f(x)=sinx+acosx的導(dǎo)函數(shù),且f'($\frac{π}{4}$)=$\frac{{\sqrt{2}}}{4}$,則實(shí)數(shù)a的值為(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

同步練習(xí)冊答案