13.下列幾個命題:
①方程x2+(a-3)x+a=0有一個正實根,一個負實根,則a<0;
②f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=2x2+x-1,則x≥0時,f(x)=-2x2+x+1;
③函數(shù)$y=\frac{{3-{2^x}}}{{{2^x}+2}}$的值域是$({-1,\frac{3}{2}})$;
④正四面體 A-BCD的內(nèi)切球體積為V1,外接球體積為V2,則$\frac{V_1}{V_2}=\frac{1}{27}$.
其中正確的有①③④.

分析 ①由題意可得:$\left\{\begin{array}{l}{△=(a-3)^{2}-4a>0}\\{a<0}\end{array}\right.$,解出a,即可判斷出結(jié)論;
②x=0時,f(0)=0,即可判斷出正誤;
③變形:函數(shù)$y=\frac{{3-{2^x}}}{{{2^x}+2}}$=$\frac{5-(2+{2}^{x})}{2+{2}^{x}}$=$\frac{5}{2+{2}^{x}}$-1,由2x>0,可得$\frac{1}{2+{2}^{x}}$∈$(0,\frac{1}{2})$,進而得出值域.
④不妨設(shè)正四面體 A-BCD的棱長為2,內(nèi)切球的半徑為r,外接球的半徑為R,利用三棱錐體積計算公式可得:解得r,R.即可判斷出結(jié)論.

解答 解:①方程x2+(a-3)x+a=0有一個正實根,一個負實根,∴$\left\{\begin{array}{l}{△=(a-3)^{2}-4a>0}\\{a<0}\end{array}\right.$,解得a<0,故①正確;
②f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=2x2+x-1,則x=0時,f(0)=0;
x>0時,-x<0,f(-x)=2x2-x-1,則f(x)=-f(-x)=-2x2+x+1,故②不正確.
③函數(shù)$y=\frac{{3-{2^x}}}{{{2^x}+2}}$=$\frac{5-(2+{2}^{x})}{2+{2}^{x}}$=$\frac{5}{2+{2}^{x}}$-1,∵2x>0,∴$\frac{1}{2+{2}^{x}}$∈$(0,\frac{1}{2})$,∴y∈$({-1,\frac{3}{2}})$,故③正確.
④不妨設(shè)正四面體 A-BCD的棱長為2,內(nèi)切球的半徑為r,外接球的半徑為R,則$\frac{1}{3}×$$\frac{\sqrt{3}}{4}$×22•r×4=$\frac{1}{3}×\frac{\sqrt{3}}{4}×{2}^{2}$×$\sqrt{{2}^{2}-(\frac{2\sqrt{3}}{3})^{2}}$,$(\sqrt{{2}^{2}-(\frac{2\sqrt{3}}{3})^{2}}-R)^{2}$+$(\frac{2\sqrt{3}}{3})^{2}$=R2,解得r=$\frac{1}{\sqrt{6}}$,R=$\frac{3}{\sqrt{6}}$.則$\frac{{V}_{1}}{{V}_{2}}$=$(\frac{r}{R})^{3}$=$\frac{1}{27}$,
故④正確.
故答案為:①③④.

點評 本題考查了函數(shù)的奇偶性單調(diào)性、一元二次方程的方程的實數(shù)根與判別式的關(guān)系、正四面體與正三角形的性質(zhì)、三棱錐的體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=-x2-2x+3在[-5,2]上的最小值和最大值分別為( 。
A.-12,-5B.-12,4C.-13,4D.-10,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)關(guān)于x的方程x2-2(m-1)x+m-1=0的兩個根為α,β,且0<α<1<β<2,則實數(shù)m的取值范圍是2<m<$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)計算:[(-2)10]${\;}^{\frac{1}{2}}$+(-1)0+2${\;}^{-2+lo{g}_{2}3}$+$\root{3}{(-\frac{3}{4})^{3}}$;
(2)已知角α終邊上一點P(-4a,3a),a≠0,求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=1+cosx的導(dǎo)數(shù)是f′(x)=-sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在某項娛樂活動的海選過程中評分人員需對同批次的選手進行考核并評分,并將其得分作為該選手的成績,成績大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過40分的選手將直接被淘汰,成績在(40,60)內(nèi)的選手可以參加復(fù)活賽,如果通過,也可以參加第二輪比賽.
(1)已知成績合格的200名參賽選手成績的頻率分布直方圖如圖,估計這200名參賽選手的成績平分數(shù)和中位數(shù);
(2)根據(jù)已有的經(jīng)驗,參加復(fù)活賽的選手能夠進入第二輪比賽的概率如表:
 參賽選手成績所在區(qū)間 (40,50] (50,60)
 每名選手能夠進入第二輪的概率 $\frac{1}{2}$ $\frac{2}{3}$
假設(shè)每名選手能否通過復(fù)活賽相互獨立,現(xiàn)有4名選手的成績分別為(單位:分)43,45,52,58,記這4名選手在復(fù)活賽中通過的人數(shù)為隨機變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{4{x}^{2}-7}{2-x}$,x∈[0,1].
(1)求f(x)的單調(diào)區(qū)間和值域;
(2)設(shè)函數(shù)g(x)=x-4-alnx,x∈($\frac{1}{e}$,e3),a∈R,若對于任意x0∈[0,1],總存在x1,x2∈($\frac{1}{e}$,e3),x1≠x2,使得g(x1)=g(x2)=f(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點P為△ABC所在平面外一點,點D、E、F分別在直線PA、PB、PC上,平面DEF∥平面ABC,且$\frac{PD}{DA}$=$\frac{PE}{EB}$=$\frac{PF}{FC}$=$\frac{2}{3}$,則$\frac{{S}_{△DEF}}{{S}_{△ABC}}$=( 。
A.$\frac{4}{9}$B.$\frac{4}{25}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)已知a,b,c∈R,且滿足a+b+c=1,求證:a2+b2+c2≥$\frac{1}{3}$.提示:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
(2)若x,y都是正實數(shù),且x+y>2,求證:$\frac{1+x}{y}$<2與$\frac{1+y}{x}$<2中至少有一個成立.

查看答案和解析>>

同步練習(xí)冊答案