3.函數(shù)f(x)=-x2-2x+3在[-5,2]上的最小值和最大值分別為(  )
A.-12,-5B.-12,4C.-13,4D.-10,6

分析 根據(jù)題意求出函數(shù)f(x)=-x2-2x+3的對稱軸為x=-1,開口朝下,判斷對稱軸x=-1∈[-5,2]內(nèi).

解答 解:函數(shù)f(x)=-x2-2x+3的對稱軸為x=-1,開口朝下
對稱軸x=-1∈[-5,2]內(nèi),
∴f(x)在x=-1處取得最大值為f(-1)=4,
f(x)在x=-5處取得最小值為f(-5)=-12,
故選:B.

點評 本題主要考查了二次函數(shù)的性質(zhì),函數(shù)圖形特征,屬簡單題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.sin30°sin75°+sin60°sin15°=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.4與9的等比中項為( 。
A.6B.-6C.±6D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,2cosC(acosB+bcosA)=c.
(1)求:C.
(2)若c=$\sqrt{7$,S△ABC=$\frac{{3\sqrt{3}}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,AB是圓的直徑,PA⊥圓所在的平面,C是圓上的點.
(Ⅰ)求證:平面PAC⊥平面PBC;
(Ⅱ)若AB=2,AC=1,PA=1,求二面角P-BC-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(2,t),$\overrightarrow{a}$⊥$\overrightarrow$,則t=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.l為空間直線,α,β為不同平面,則下列推導(dǎo)正確的是( 。
A.α⊥β,l∥α⇒l⊥βB.α⊥β,l⊥α⇒l∥βC.α∥β,l∥α⇒l∥βD.α∥β,l⊥α⇒l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.求直線l:x+y-5=0和圓C:x2+y2-4x+6y-12=0的位置關(guān)系( 。
A.相離B.相切C.相交D.過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列幾個命題:
①方程x2+(a-3)x+a=0有一個正實根,一個負(fù)實根,則a<0;
②f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=2x2+x-1,則x≥0時,f(x)=-2x2+x+1;
③函數(shù)$y=\frac{{3-{2^x}}}{{{2^x}+2}}$的值域是$({-1,\frac{3}{2}})$;
④正四面體 A-BCD的內(nèi)切球體積為V1,外接球體積為V2,則$\frac{V_1}{V_2}=\frac{1}{27}$.
其中正確的有①③④.

查看答案和解析>>

同步練習(xí)冊答案