17.(1)已知x∈R,m=x2-1,n=2x+2.求證:m,n中至少有一個是非負(fù)數(shù).
(2)已知a,b,c均為正實數(shù),且a+b+c=1,求證:($\frac{1}{a}$-1)($\frac{1}$-1)($\frac{1}{c}$-1)≥8.

分析 (1)用反證法證明即可;
(2)利用基本不等式即可證明.

解答 (1)證明:假設(shè)m<0且n<0,所以 m+n<0.
又m+n=x2-1+2x+2=x2+2x+1=(x+1)2≥0,
這與假設(shè)所得結(jié)論矛盾,故假設(shè)不成立,
所以,m,n中至少有一個是非負(fù)數(shù);
(2)證明:因為a,b,c均為正實數(shù),且a+b+c=1,
則:($\frac{1}{a}$-1)($\frac{1}$-1)($\frac{1}{c}$-1)=$\frac{a+b+c-a}{a}$•$\frac{a+b+c-b}$•$\frac{a+b+c-c}{c}$=$\frac{b+c}{a}$•$\frac{a+c}$•$\frac{a+b}{c}$≥2$\frac{\sqrt{bc}}{a}$•2$\frac{\sqrt{ac}}$•2$\frac{\sqrt{ab}}{c}$=8,當(dāng)且僅當(dāng)a=b=c=$\frac{1}{3}$時取等號.

點評 本題考查了不等式的證明,常采用發(fā)證法和基本不等式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡:
(1)$\frac{-sin(180°+α)+sin(-α)-tan(360°+α)}{tan(α+180°)+cos(-α)+cos(180°-α)}$
(2)$\frac{{cos({α-\frac{π}{2}})}}{{sin({\frac{5π}{2}+α})}}•sin({π-α})•cos({2π+α})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某人經(jīng)營一個抽獎游戲,顧客花費(fèi)3元錢可購買一次游戲機(jī)會,每次游戲中,顧客從標(biāo)有黑1、黑2、黑3、黑4、紅1、紅3的6張卡片中隨機(jī)抽取2張,并根據(jù)摸出的卡片的情況進(jìn)行兌獎,經(jīng)營者將顧客抽到的卡片情況分成以下類別:
A:同花順,即卡片顏色相同且號碼相鄰;
B:同花,即卡片顏色相同,但號碼不相鄰;
C:順子,即卡片號碼相鄰,但顏色不同;
D:對子,即兩張卡片號碼相同;
E:其他,即A,B,C,D以外的所有可能情況,
若經(jīng)營者打算將以上五種類別中最不容易發(fā)生的一種類別對應(yīng)顧客中一等獎,最容易發(fā)生的一種類別對應(yīng)顧客中二等獎,其他類別對應(yīng)顧客中三等獎.
(1)一、二等獎分別對應(yīng)哪一種類別?(寫出字母即可)
(2)若經(jīng)營者規(guī)定:中一、二、三等獎,分別可獲得價值9元、3元、1元的獎品,假設(shè)某天參與游戲的顧客為300人次,試估計經(jīng)營者這一天的盈利.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,$\overrightarrow m$=(-2a+c,b),$\overrightarrow n$=(cosB,cosC),且 $\overrightarrow m$•$\overrightarrow n$=0.
(1)求角B的大。
(2)若b2=ac,求$\frac{1}{tanA}+\frac{1}{tanC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.有四個數(shù):前三個成等差數(shù)列,后三個成等比數(shù)列.首末兩數(shù)和為16,中間兩數(shù)和為12.求這四個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)計一個算法框圖,計算S=1+2+3+…+100及T=1×2×3×…×100,并且用兩種語句表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.?dāng)?shù)列2,$\frac{4}{3},\frac{8}{5},\frac{16}{7},\frac{32}{9}$,…的一個通項公式an等于( 。
A.$\frac{2n}{2n-1}$B.$\frac{2^n}{n}$C.$\frac{2^n}{2n-1}$D.$\frac{2^n}{2n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.370與1332的最大公約數(shù)為74.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-4,7),則$\overrightarrow a$在$2\sqrt{3}\overrightarrow b$方向上的射影為(  )
A.$\sqrt{13}$B.$\frac{{\sqrt{13}}}{5}$C.$\sqrt{65}$D.$\frac{{\sqrt{65}}}{5}$

查看答案和解析>>

同步練習(xí)冊答案