函數(shù)f(x)=1-
x-1
(x≥2)的反函數(shù)是
 
考點(diǎn):反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令y=1-
x-1
(x≥2),易得x=(1-y)2+1,求y的范圍可得x=(1-y)2+1,y≤0,進(jìn)而可得反函數(shù)為:y=(1-x)2+1,x≤0
解答: 解:令y=1-
x-1
(x≥2),
x-1
=1-y,
平方可得x-1=(1-y)2,
∴x=(1-y)2+1,
∵x≥2,∴
x-1
≥1,
∴1-y≥1,解得y≤0,
∴x=(1-y)2+1,y≤0,
∴所求反函數(shù)為:y=(1-x)2+1,x≤0,
故答案為:y=(1-x)2+1,x≤0
點(diǎn)評(píng):本題考查反函數(shù)的求解,涉及變量范圍的確定,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角三角形ABC中,∠C=
π
2
,AC=3,取點(diǎn)D使
BD
=2
DA
,那么
CD
CA
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+x2-3x,求該函數(shù)的極大值與極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

討論關(guān)于x的方程|x2-4x+3|=a(a∈R)的實(shí)數(shù)解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax2+bx+c(a≠0)是偶函數(shù),f(1)=5,f(2)=11
(Ⅰ)求f(x)的解析式;
(Ⅱ)當(dāng)x∈[-1,5]時(shí),求f(x)的值域;
(Ⅲ)用定義證明f(x)在(-2,0)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=x|x-a|,下列說(shuō)法中,描述完全正確的個(gè)數(shù)為(  )
①無(wú)論a取何實(shí)數(shù),函數(shù)f(x)的圖象均過(guò)原點(diǎn);
②當(dāng)a>2時(shí),函數(shù)f(x)在區(qū)間(-∞,2]上的解析式為f(x)=-x2+ax;
③當(dāng)a=1時(shí),函數(shù)f(x)有最大值
1
4

④當(dāng)a=2時(shí),若函數(shù)y=f(x)-m有3個(gè)不同的零點(diǎn),則0<m<1.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=sin(2x+
π
6
)-cos(
3
-2x),x∈R
(1)求函數(shù)g(x)的最小正周期及單減區(qū)間;
(2)若將函數(shù)g(x)先左平移
6
個(gè)單位,再將其縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍得到函數(shù)f(x),當(dāng)x∈[-
8
,λ]時(shí),f(x)的值域恰好為[-2
2
,4],求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,空間四邊形OABC各邊以及AC,BO的長(zhǎng)都是1,點(diǎn)D是邊OA,BC的中點(diǎn),連接DE.
(1)計(jì)算DE的長(zhǎng);
(2)求點(diǎn)O到面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
a
x
(a>0)在區(qū)間[2,+∞)上的值域?yàn)閇2
a
,+∞),則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案