8.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{4π}{3}$+$\frac{9\sqrt{3}}{4}$B.$\frac{4π}{3}$+$\frac{27\sqrt{3}}{4}$C.$\frac{8π}{3}$+$\frac{9\sqrt{3}}{4}$D.$\frac{8π}{3}$+$\frac{27\sqrt{3}}{4}$

分析 由三視圖得到幾何體是球與三棱錐的組合體,根據(jù)圖中數(shù)據(jù)計(jì)算體積.

解答 解:由題意,幾何體是球與三棱錐的組合體,其中球的直徑為2,三棱錐是底面是邊長(zhǎng)為3 的等邊三角形,棱錐高為3,
所以體積為$\frac{4}{3}π×{1}^{3}+\frac{1}{3}×\frac{\sqrt{3}}{4}×{3}^{2}×3=\frac{4π}{3}+\frac{9\sqrt{3}}{4}$;
故選A.

點(diǎn)評(píng) 本題考查了由幾何體的三視圖求幾何體的體積;關(guān)鍵是正確還原幾何體.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(1-2x)5的二項(xiàng)展開式中各項(xiàng)系數(shù)的絕對(duì)值之和為243.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.將7人分成3組,要求每組至多3人,則不同的分組方法種數(shù)是175.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,則z=$\frac{4x}{y}$+$\frac{y}{x}$的取值范圍是( 。
A.[4,$\frac{17}{2}$]B.[$\frac{13}{3}$,$\frac{17}{2}$]C.[4,$\frac{37}{3}$]D.[$\frac{17}{2}$,$\frac{37}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得出這個(gè)幾何體的內(nèi)切球半徑是( 。
A.$\frac{4}{3}$B.$\frac{4}{9}$C.$\sqrt{6}-2$D.$3\sqrt{6}-6$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD,E為AD的中點(diǎn),異面直線AP與CD所成的角為90°.
(Ⅰ)證明:△PBE是直角三角形;
(Ⅱ)若二面角P-CD-A的大小為45°,求二面角A-PE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}的前n項(xiàng)和是Sn,則下列四個(gè)命題中,錯(cuò)誤的是(  )
A.若數(shù)列{an}是公差為d的等差數(shù)列,則數(shù)列{$\frac{{S}_{n}}{n}$}的公差為$\fracr7hnrrp{2}$的等差數(shù)列
B.若數(shù)列{$\frac{{S}_{n}}{n}$}是公差為d的等差數(shù)列,則數(shù)列{an}是公差為2d的等差數(shù)列
C.若數(shù)列{an}是等差數(shù)列,則數(shù)列的奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別構(gòu)成等差數(shù)列
D.若數(shù)列{an}的奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別構(gòu)成公差相等的等差數(shù)列,則{an}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四棱錐D-ABCM中,AD⊥DM,底面四邊形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=4,平面AMD⊥平面ABCM.
(Ⅰ)證明:AD⊥BD;
(Ⅱ)若AD=DM,
(i)求直線BD與平面AMD所成角的正弦值;
(ii)求三棱錐D-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.二面角α-AB-β的平面角是銳角θ,M∈α,MN⊥β,N∈β,C∈AB,∠MCB為銳角,則( 。
A.∠MCN<θB.∠MCN=θ
C.∠MCN>θD.以上三種情況都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案