【題目】某校100名學(xué)生期中考試語文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60][60,70][70,80][80,90][90,100].

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績(jī)的平均分;

(3)若這100名學(xué)生語文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績(jī)?cè)?/span>[5090)之外的人數(shù).

【答案】1275 310

【解析】

試題分析 :(1)由頻率分布真方的面積為1,解得。(2)取每個(gè)區(qū)間的中點(diǎn)數(shù)值與這個(gè)區(qū)間的頻率相乘的和為平均數(shù)。(3)數(shù)學(xué)成績(jī)?cè)?/span>的人數(shù)為:.?dāng)?shù)學(xué)成績(jī)?cè)?/span>之外的人數(shù)為:

試題解析:(Ⅰ)由題意得,解得

(Ⅱ)由. 

(Ⅲ)由頻率分布表可知,

數(shù)學(xué)成績(jī)?cè)?/span>的人數(shù)為:

于是,數(shù)學(xué)成績(jī)?cè)?/span>之外的人數(shù)為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)< ,則不等式f(x2)< + 的解集為(
A.(﹣ ,
B.(﹣∞,﹣1)∪(1,+∞)??
C.(﹣1,1)
D.(﹣∞,﹣ )∪( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3an﹣1,其中n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)anbn= ,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱柱的所有棱長(zhǎng)都相等,分別為的中點(diǎn).現(xiàn)有下列四個(gè)結(jié)論:

;

平面:異面直線所成角的余弦值為.

其中正確的結(jié)論是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有兩臺(tái)不同機(jī)器AB生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績(jī)的莖葉圖如圖所示:

該產(chǎn)品的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為優(yōu)秀;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為良好;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為合格將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.

從等級(jí)為優(yōu)秀的樣本中隨機(jī)抽取兩件,記X為來自B機(jī)器生產(chǎn)的產(chǎn)品數(shù)量,寫出X的分布列,并求X的數(shù)學(xué)期望;

完成下列列聯(lián)表,以產(chǎn)品等級(jí)是否達(dá)到良好以上含良好為判斷依據(jù),判斷能不能在誤差不超過的情況下,認(rèn)為B機(jī)器生產(chǎn)的產(chǎn)品比A機(jī)器生產(chǎn)的產(chǎn)品好;

A生產(chǎn)的產(chǎn)品

B生產(chǎn)的產(chǎn)品

合計(jì)

良好以上含良好

合格

合計(jì)

已知優(yōu)秀等級(jí)產(chǎn)品的利潤(rùn)為12元件,良好等級(jí)產(chǎn)品的利潤(rùn)為10元件,合格等級(jí)產(chǎn)品的利潤(rùn)為5元件,A機(jī)器每生產(chǎn)10萬件的成本為20萬元,B機(jī)器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測(cè)算,兩種機(jī)器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達(dá)到5萬元以上,則淘汰收益低的機(jī)器,若收益之差不超過5萬元,則仍然保留原來的兩臺(tái)機(jī)器你認(rèn)為該工廠會(huì)仍然保留原來的兩臺(tái)機(jī)器嗎?

附:獨(dú)立性檢驗(yàn)計(jì)算公式:

臨界值表:

k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,焦距為.斜率為k的直線l與橢圓M有兩個(gè)不同的交點(diǎn)A,B.

)求橢圓M的方程;

)若,求 的最大值;

)設(shè),直線PA與橢圓M的另一個(gè)交點(diǎn)為C,直線PB與橢圓M的另一個(gè)交點(diǎn)為D.C,D和點(diǎn) 共線,求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列的前項(xiàng)和為,,且,,成等差數(shù)列,數(shù)列滿足

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),數(shù)列的前項(xiàng)和為,若對(duì)任意,不等式 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+bx2+cx﹣1當(dāng)x=﹣2時(shí)有極值,且在x=﹣1處的切線的斜率為﹣3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[﹣1,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為棱AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1E⊥C1F,A1C1⊥B1C1

(1)求證:DE∥平面A1C1F;

(2)求證:B1E⊥平面A1C1F

查看答案和解析>>

同步練習(xí)冊(cè)答案