【題目】已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導函數(shù)f′(x)< ,則不等式f(x2)< + 的解集為(
A.(﹣ ,
B.(﹣∞,﹣1)∪(1,+∞)??
C.(﹣1,1)
D.(﹣∞,﹣ )∪( ,+∞)

【答案】B
【解析】解:設F(x)=f(x)﹣ x,則F′(x)=f′(x)﹣ ,
∵f′(x)< ,∴F′(x)=f′(x)﹣ <0,
即函數(shù)F(x)在R上單調遞減
而f(x2)< +
即f(x2)﹣ <f(1)﹣ ,
∴F(x2)<F(1)而函數(shù)F(x)在R上單調遞減,
∴x2>1即x∈(﹣∞,﹣1)∪(1,+∞),
故選:B.
【考點精析】掌握利用導數(shù)研究函數(shù)的單調性是解答本題的根本,需要知道一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當時,求函數(shù)的極值;

(2)當時,討論函數(shù)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率是,點在橢圓上,AB分別為橢圓的右頂點與上頂點,過點A,B引橢圓C的兩條弦AE、BF交橢圓于點E,F

求橢圓C的方程;

若直線AE,BF的斜率互為相反數(shù),

求出直線EF的斜率;

O為直角坐標原點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有5人進入到一列有7節(jié)車廂的地鐵中,分別求下列情況的概率用數(shù)字作最終答案

恰好有5節(jié)車廂各有一人;

恰好有2節(jié)不相鄰的空車廂;

恰好有3節(jié)車廂有人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我校的課外綜合實踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到

市氣象觀測站與市醫(yī)院抄錄了16月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到

如下資料:

日期

110

210

310

410

510

610

晝夜溫差 (°C)

10

11

13

12

8

6

就診人數(shù) ()

22

25

29

26

16

12

該綜合實踐研究小組確定的研究方案是:先從這六組數(shù)據中選取2組,用剩下的4組數(shù)據求線性回歸方程,再用被選取的2組數(shù)據進行檢驗.

(1)若選取的是1月與6月的兩組數(shù)據,請根據25月份的數(shù)據,求出關于的線性回歸方程

2)若由線性回歸方程得到的估計數(shù)據與所選出的檢驗數(shù)據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

參考數(shù)據:

.

參考公式:回歸直線,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}中,2a2+a3+a5=20,且前10項和S10=100.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列 的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2+bx﹣alnx.
(1)若x=2是函數(shù)f(x)的極值點,1和x0是函數(shù)f(x)的兩個不同零點,且x0∈(n,n+1),n∈N,求n.
(2)若對任意b∈[﹣2,﹣1],都存在x∈(1,e)(e為自然對數(shù)的底數(shù)),使得f(x)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣ cos2x.
(1)求f(x)的最小周期和最小值;
(2)將函數(shù)f(x)的圖象上每一點的橫坐標伸長到原來的兩倍,縱坐標不變,得到函數(shù)g(x)的圖象.當x∈ 時,求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60][60,70][70,80][80,90][90,100].

(1)求圖中a的值;

(2)根據頻率分布直方圖,估計這100名學生語文成績的平均分;

(3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如下表所示,求數(shù)學成績在[50,90)之外的人數(shù).

查看答案和解析>>

同步練習冊答案