【題目】下列命題:(1)正方形的四條邊相等;(2)有兩個角是的三角形是等腰直角三角形;(3)正數(shù)的平方根不等于0;(4)至少有一個正整數(shù)是偶數(shù);是全稱量詞命題的有________;是存在量詞命題的有________.(填序號)

【答案】(1)(2)(3) (4)

【解析】

直接根據(jù)全稱量詞命題與存在量詞命題的概念,即可判斷四個命題中的全稱量詞命題與存在量詞命題,進(jìn)而得到答案.

(1)中量詞任意一個省咯,是全稱量詞命題;

(2)的含義是任何有兩個角是的三角形是等腰直角三角形,含有全稱量詞,是全稱量詞命題;

(3)0中量詞任意一個省略,是全稱量詞命題;

(4)中含有存在量詞至少,是存在量詞命題.

故答案為:(1). (1)(2)(3);(2). (4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)上單調(diào)遞減,且,則不等式的解集________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】支付寶作為一款移動支付工具,在日常生活中起到了重要的作用.巴蜀中學(xué)高2018屆學(xué)生為了調(diào)查支付寶在人群中的使用情況,在街頭隨機(jī)對名市民進(jìn)行了調(diào)查,結(jié)果如下.

(1)對名市民按年齡以及是否使用支付寶進(jìn)行分組,得到以下表格,試問能否有的把握認(rèn)為“使用支付寶與年齡有關(guān)”?

使用支付寶

不使用支付寶

合計(jì)

歲以上

歲以下

合計(jì)

(2)現(xiàn)采用分層抽樣的方法,從被調(diào)查的歲以下的市民中抽取了位進(jìn)行進(jìn)一步調(diào)查,然后從這位市民中隨機(jī)抽取位,求至少抽到位“使用支付寶”的市民的概率;

(3) 為了鼓勵市民使用支付寶,支付寶推出了“獎勵金”活動,每使用支付寶支付一次,分別有的概率獲得元獎勵金,每次支付獲得的獎勵金情況互不影響.若某位市民在一周使用了次支付寶,記為這一周他獲得的獎勵金數(shù),求的分布列和數(shù)學(xué)期望.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)n為正整數(shù)集合,n對于集合A中的任意元素,記.

1)當(dāng)時,若,求的值;

2)當(dāng)時,設(shè)BA的子集,且滿足:對于B中的任意元素α,β,當(dāng)α,β相同時,是奇數(shù);當(dāng)α,β不同時,是偶數(shù).求集合B中元素個數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45/m,新墻的造價(jià)為180/m,設(shè)利用的舊墻的長度為x(單位:元)。

)將y表示為x的函數(shù);

)試確定x,使修建此矩形場地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性及極值;

(Ⅱ)若不等式內(nèi)恒成立,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)當(dāng)時,若函數(shù)存在與直線平行的切線,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時,,若的最小值是,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】麻團(tuán)又叫煎堆,呈球形,華北地區(qū)稱麻團(tuán),是一種古老的中華傳統(tǒng)特色油炸面食,寓意團(tuán)圓。制作時以糯米粉團(tuán)炸起,加上芝麻而制成,有些包麻茸、豆沙等餡料,有些沒有。一個長方體形狀的紙盒中恰好放入4個球形的麻團(tuán),它們彼此相切,同時與長方體紙盒上下底和側(cè)面均相切,其俯視圖如圖所示,若長方體紙盒的表面積為576 則一個麻團(tuán)的體積為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值

(2)定義:若函數(shù)在區(qū)間 上的取值范圍為,則稱區(qū)間為函數(shù)的“美麗區(qū)間”.試問函數(shù)上是否存在“美麗區(qū)間”?若存在,求出所有符合條件的“美麗區(qū)間”;若不存在,請說明理由

查看答案和解析>>

同步練習(xí)冊答案